27 research outputs found

    The Massive Star Content of NGC 3603

    Full text link
    We investigate the massive star content of NGC 3603, the closest known giant H II region. We have obtained spectra of 26 stars in the central cluster using the Baade 6.5-m telescope (Magellan I). Of these 26 stars, 16 had no previous spectroscopy. We also obtained photometry of all of the stars with previous or new spectroscopy, primarily using archival HST ACS/HRC images. We use these data to derive an improved distance to the cluster, and to construct an H-R diagram for discussing the masses and ages of the massive star content of this cluster.Comment: Accepted by the Astronomical Journal. This revision updates the coordinates in Table 1 by (-0.18sec, +0.2") to place them on the UCAC2 syste

    Progressive star formation in the young galactic super star cluster NGC 3603

    Get PDF
    Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Halpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.Comment: 10 pages, 8 figures, accepted for publication in The Astrophysical Journa

    Detection of brown dwarf-like objects in the core of NGC3603

    Full text link
    We use near-infrared data obtained with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope to identify objects having the colors of brown dwarfs (BDs) in the field of the massive galactic cluster NGC 3603. These are identified through use of a combination of narrow and medium band filters spanning the J and H bands, and which are particularly sensitive to the presence of the 1.3-1.5{\mu}m H2O molecular band - unique to BDs. We provide a calibration of the relationship between effective temperature and color for both field stars and for BDs. This photometric method provides effective temperatures for BDs to an accuracy of {\pm}350K relative to spectroscopic techniques. This accuracy is shown to be not significantly affected by either stellar surface gravity or uncertainties in the interstellar extinction. We identify nine objects having effective temperature between 1700 and 2200 K, typical of BDs, observed J-band magnitudes in the range 19.5-21.5, and that are strongly clustered towards the luminous core of NGC 3603. However, if these are located at the distance of the cluster, they are far too luminous to be normal BDs. We argue that it is unlikely that these objects are either artifacts of our dataset, normal field BDs/M-type giants or extra-galactic contaminants and, therefore, might represent a new class of stars having the effective temperatures of BDs but with luminosities of more massive stars. We explore the interesting scenario in which these objects would be normal stars that have recently tidally ingested a Hot Jupiter, the remnants of which are providing a short-lived extended photosphere to the central star. In this case, we would expect them to show the signature of fast rotation.Comment: 26 Pages, 8 Figures, Accepted for publication on Ap

    Cytomegalovirus-Mediated Upregulation of Chemokine Expression Correlates with the Acceleration of Chronic Rejection in Rat Heart Transplants

    No full text
    Cytomegalovirus (CMV) infections have been shown to dramatically affect solid organ transplant graft survival in both human and animal models. Recently, it was demonstrated that rat CMV (RCMV) infection accelerates the development of transplant vascular sclerosis (TVS) in both rat heart and small bowel graft transplants. However, the mechanisms involved in this process are still unclear. In the present study, we determined the kinetics of RCMV-accelerated TVS in a rat heart transplant model. Acute RCMV infection enhances the development of TVS in rat heart allografts, and this process is initiated between 21 and 24 days posttransplantation. The virus is consistently detected in the heart grafts from day 7 until day 35 posttransplantation but is rarely found at the time of graft rejection (day 45 posttransplantation). Grafts from RCMV-infected recipients had upregulation of chemokine expression compared to uninfected controls, and the timing of this increased expression paralleled that of RCMV-accelerated neointimal formation. In addition, graft vessels from RCMV-infected grafts demonstrate the increased infiltration of T cells and macrophages during periods of highest chemokine expression. These results suggest that CMV-induced acceleration of TVS involves the increased graft vascular infiltration of inflammatory cells through enhanced chemokine expression
    corecore