13 research outputs found

    Two cations, two mechanisms : interactions of sodium and calcium with zwitterionic lipid membranes

    Get PDF
    Adsorption of metal cations onto a cellular membrane changes its properties, such as interactions with charged moieties or the propensity for membrane fusion. It is, however, unclear whether cells can regulate ion adsorption and the related functions via locally adjusting their membrane composition. We employed fluorescence techniques and computer simulations to determine how the presence of cholesterol-a key molecule inducing membrane heterogeneity-affects the adsorption of sodium and calcium onto zwitterionic phosphatidylcholine bilayers. We found that the transient adsorption of sodium is dependent on the number of phosphatidylcholine head groups, while the strong surface binding of calcium is determined by the available surface area of the membrane. Cholesterol thus does not affect sodium adsorption and only plays an indirect role in modulating the adsorption of calcium by increasing the total surface area of the membrane. These observations also indicate how lateral lipid heterogeneity can regulate various ion-induced processes including adsorption of peripheral proteins, nanoparticles, and other molecules onto membranes.Peer reviewe

    Freestanding non-covalent thin films of the propeller-shaped polycyclic aromatic hydrocarbon decacyclene

    Get PDF
    Molecularly thin, nanoporous thin films are of paramount importance in material sciences. Their use in a wide range of applications requires control over their chemical functionalities, which is difficult to achieve using current production methods. Here, the small polycyclic aromatic hydrocarbon decacyclene is used to form molecular thin films, without requiring covalent crosslinking of any kind. The 2.5 nm thin films are mechanically stable, able to be free-standing over micrometer distances, held together solely by supramolecular interactions. Using a combination of computational chemistry and microscopic imaging techniques, thin films are studied on both a molecular and microscopic scale. Their mechanical strength is quantified using AFM nanoindentation, showing their capability of withstanding a point load of 26 ± 9 nN, when freely spanning over a 1 μm aperture, with a corresponding Young’s modulus of 6 ± 4 GPa. Our thin films constitute free-standing, non-covalent thin films based on a small PAH

    Lateral membrane organization as target of an antimicrobial peptidomimetic compound

    Get PDF
    Antimicrobial resistance is one of the leading concerns in medical care. Here we study the mechanism of action of an antimicrobial cationic tripeptide, AMC-109, by combining high speed-atomic force microscopy, molecular dynamics, fluorescence assays, and lipidomic analysis. We show that AMC-109 activity on negatively charged membranes derived from Staphylococcus aureus consists of two crucial steps. First, AMC-109 self-assembles into stable aggregates consisting of a hydrophobic core and a cationic surface, with specificity for negatively charged membranes. Second, upon incorporation into the membrane, individual peptides insert into the outer monolayer, affecting lateral membrane organization and dissolving membrane nanodomains, without forming pores. We propose that membrane domain dissolution triggered by AMC-109 may affect crucial functions such as protein sorting and cell wall synthesis. Our results indicate that the AMC-109 mode of action resembles that of the disinfectant benzalkonium chloride (BAK), but with enhanced selectivity for bacterial membranes.</p

    Teixobactin kills bacteria by a two-pronged attack on the cell envelope

    Get PDF
    Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates

    Teixobactin kills bacteria by a two-pronged attack on the cell envelope

    Get PDF
    Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates

    Teixobactin kills bacteria by a two-pronged attack on the cell envelope

    Get PDF
    Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates

    Model membranes studied by advanced fluorescence techniques and molecular dynamics simulations

    No full text
    In this thesis, we start with the description of the biophysical properties of the plasma membrane models upon signaling processess such as the increased cytoso- lic concentration of calcium ions, or posttranslational modifications of membrane proteins. Calcium signaling is characterized by a rapid increase of its cytosolic concentration. We identify calcium binding sites and characterize the binding in the plasma membrane models of increasing complexity from pure phospholipid bilayers, through cholesterol and peptide rich lipid membranes, to membranes ex- tracted from HEK293 cells. We use Time-Dependent Fluorescent Shift method, which provides direct information on hydration and mobility in defined regions of a lipid bilayer, accompanied with molecular dynamic (MD) simulations, which give molecular details of the studied interactions. The initial step of signaling mediated by PAG protein is its double palmi- toylation. We investigate changes of the biophysical properties of both the lipid membrane and the peptide itself upon the incorporation of the palmitoyls. Em- ploying all atom MD simulations, we study inter- and intramolecular interactions as well as changes in membrane hydration, thickness, or lipid ordering. The second part of the thesis, realized in a direct collaboration with a phar- macological..

    Studium modelových membrán pokročilými fluorescenčními technikami a molekulárně dynamickými simulacemi

    No full text
    Úvod této práce se věnuje popisu biofyzikálních vlastností modelů plazmatic- ké membrány během procesů buněčné signalizace, jako je zvýšená koncentrace cytosolické koncentrace vápníku nebo posttranslační modifikace membránových proteinů. Vápníková signalizace je charakteristická rychlým nárůstem koncen- trace vápníku v cytosolu buňky. V našem výzkumu jsme identifikovali specifická vazebná místa pro vápník a charakterizovali jeho vázání v modelech plazmatic- ké membrány se vzrůstající složitostí. Začali jsme s nejjednodušším modelem dvouvrstvy fosfolipidů, dále obohacené o cholesterol a peptidy. Nejsložitějším modelem pak jsou membrány extrahované z buněk HEK293. V experimentech používáme metodu časově závislého posunu fluorescence, která poskytuje přímou informaci o hydrataci a mobilitě v definovaných místech studované membrány. Experimenty jsou doplněny o molekulárně dynamické (MD) simulace, díky kterým získáme molekulární detail studovaných interakcí. Signalizace PAG proteinu je spuštěna jeho dvojí palmitoylací. Naše studium je zaměřeno na změny v biofyzikálních charakteristikách jak samotného peptidu, tak okolní lipidové membrány po připojení těchto palmitoylů. Za pomoci ato- mistických MD...In this thesis, we start with the description of the biophysical properties of the plasma membrane models upon signaling processess such as the increased cytoso- lic concentration of calcium ions, or posttranslational modifications of membrane proteins. Calcium signaling is characterized by a rapid increase of its cytosolic concentration. We identify calcium binding sites and characterize the binding in the plasma membrane models of increasing complexity from pure phospholipid bilayers, through cholesterol and peptide rich lipid membranes, to membranes ex- tracted from HEK293 cells. We use Time-Dependent Fluorescent Shift method, which provides direct information on hydration and mobility in defined regions of a lipid bilayer, accompanied with molecular dynamic (MD) simulations, which give molecular details of the studied interactions. The initial step of signaling mediated by PAG protein is its double palmi- toylation. We investigate changes of the biophysical properties of both the lipid membrane and the peptide itself upon the incorporation of the palmitoyls. Em- ploying all atom MD simulations, we study inter- and intramolecular interactions as well as changes in membrane hydration, thickness, or lipid ordering. The second part of the thesis, realized in a direct collaboration with a phar- macological...Faculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Model membranes studied by advanced fluorescence techniques and molecular dynamics simulations

    No full text
    In this thesis, we start with the description of the biophysical properties of the plasma membrane models upon signaling processess such as the increased cytoso- lic concentration of calcium ions, or posttranslational modifications of membrane proteins. Calcium signaling is characterized by a rapid increase of its cytosolic concentration. We identify calcium binding sites and characterize the binding in the plasma membrane models of increasing complexity from pure phospholipid bilayers, through cholesterol and peptide rich lipid membranes, to membranes ex- tracted from HEK293 cells. We use Time-Dependent Fluorescent Shift method, which provides direct information on hydration and mobility in defined regions of a lipid bilayer, accompanied with molecular dynamic (MD) simulations, which give molecular details of the studied interactions. The initial step of signaling mediated by PAG protein is its double palmi- toylation. We investigate changes of the biophysical properties of both the lipid membrane and the peptide itself upon the incorporation of the palmitoyls. Em- ploying all atom MD simulations, we study inter- and intramolecular interactions as well as changes in membrane hydration, thickness, or lipid ordering. The second part of the thesis, realized in a direct collaboration with a phar- macological..

    Studium modelových membrán pokročilými fluorescenčními technikami a molekulárně dynamickými simulacemi

    No full text
    Úvod této práce se věnuje popisu biofyzikálních vlastností modelů plazmatic- ké membrány během procesů buněčné signalizace, jako je zvýšená koncentrace cytosolické koncentrace vápníku nebo posttranslační modifikace membránových proteinů. Vápníková signalizace je charakteristická rychlým nárůstem koncen- trace vápníku v cytosolu buňky. V našem výzkumu jsme identifikovali specifická vazebná místa pro vápník a charakterizovali jeho vázání v modelech plazmatic- ké membrány se vzrůstající složitostí. Začali jsme s nejjednodušším modelem dvouvrstvy fosfolipidů, dále obohacené o cholesterol a peptidy. Nejsložitějším modelem pak jsou membrány extrahované z buněk HEK293. V experimentech používáme metodu časově závislého posunu fluorescence, která poskytuje přímou informaci o hydrataci a mobilitě v definovaných místech studované membrány. Experimenty jsou doplněny o molekulárně dynamické (MD) simulace, díky kterým získáme molekulární detail studovaných interakcí. Signalizace PAG proteinu je spuštěna jeho dvojí palmitoylací. Naše studium je zaměřeno na změny v biofyzikálních charakteristikách jak samotného peptidu, tak okolní lipidové membrány po připojení těchto palmitoylů. Za pomoci ato- mistických MD...In this thesis, we start with the description of the biophysical properties of the plasma membrane models upon signaling processess such as the increased cytoso- lic concentration of calcium ions, or posttranslational modifications of membrane proteins. Calcium signaling is characterized by a rapid increase of its cytosolic concentration. We identify calcium binding sites and characterize the binding in the plasma membrane models of increasing complexity from pure phospholipid bilayers, through cholesterol and peptide rich lipid membranes, to membranes ex- tracted from HEK293 cells. We use Time-Dependent Fluorescent Shift method, which provides direct information on hydration and mobility in defined regions of a lipid bilayer, accompanied with molecular dynamic (MD) simulations, which give molecular details of the studied interactions. The initial step of signaling mediated by PAG protein is its double palmi- toylation. We investigate changes of the biophysical properties of both the lipid membrane and the peptide itself upon the incorporation of the palmitoyls. Em- ploying all atom MD simulations, we study inter- and intramolecular interactions as well as changes in membrane hydration, thickness, or lipid ordering. The second part of the thesis, realized in a direct collaboration with a phar- macological...Katedra makromolekulární fyzikyDepartment of Macromolecular PhysicsFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult
    corecore