32 research outputs found

    PENGEMBANGAN BIONANOKOMPOSIT BERBAHAN PATI BENGKUANG DENGAN PENGUAT CELLULOSE NANOFIBERS (CNF) DAUN NANAS UNTUK PEMBUATAN BIOPLASTIK PADA APLIKASI KEMASAN MAKANAN

    Get PDF
    Dalam penelitian ini, isolasi dan karakterisasi nanoselulosa dari serat daun nanas, serta pembuatan film pati dan bionanokomposit telah dilakukan. Tujuan penelitian ini adalah pembuatan bionanokomposit film pati bengkuang dengan penguat nanoselulosa daun nanas sebagai alternatif pengganti plastik sintetis. Tahapan pertama mendapatkan nanoselulosa dari daun nanas dan tahapan kedua pembuatan bionanokomposit film. Metode yang digunakan untuk mendapatkan nanoselulosa dengan perlakuan kimia dan mekanik. Perlakuan kimia yang dilakukan adalah proses alkalisasi, pemutihan, dan hidrolisis asam yang bertujuan untuk menghilangkan komponen amorf pada serat dan mendapatkan selulosa murni. Setelah itu, dilanjutkan dengan perlakuan mekanik yaitu high-shear homogenization dan ultrasonikasi untuk mendapatkan nanoselulosa. Efek penambahan nanoselulosa pada sifat-sifat film pati bengkuang dan bionanokomposit diteliti. Metode yang digunakan dalam pembuatan bionanokomposit film adalah solution casting. Pati bengkuang, gliserol, dan aquades ditambahkan dengan konsentrasi 0,5; 0,1; 1,5; dan 2% berat kering nanoselulosa terhadap berat kering pati. Gel yang dibuat dari campuran ini mendapatkan perlakuan ultrasonikasi menggunakan ultrasonic probe (600W) selama 5 menit kemudian dicetak dalam cawan petri. Penambahan nanoselulosa menunjukkan efek yang signifikan (p ≤ 0,05) terhadap sifat film pati dan bionanokomposit. Hal ini dikarenakan proses ultrasonikasi dapat mendistribusikan nanoselulosa secara homogen ke seluruh matriks pati. Perubahan morfologis pada serat daun nanas sebelum dan setelah perlakuan diamati dengan menggunakan scanning electron microscopy (SEM). Pengamatan SEM menunjukkan bahwa serat daun nanas setelah proses high-shear homogenization berdiameter 1-10 mm. Hasil analisis ukuran partikel dengan particle size analysis (PSA) menunjukkan bahwa nanoselulosa dari hasil ultrasonikasi memiliki diameter rata-rata 68 nm. Indeks kristalinitas ditentukan oleh X-ray diffraction (XRD) dengan nilai tertinggi setelah proses hidrolisis asam sebesar 83%, tetapi setelah 60 menit proses ultrasonikasi nilai indeks kristalinitas mengalami penurunan menjadi 62%. Sementara itu, pengujian fourier transform infrared (FTIR) menunjukkan tidak ada perubahan struktur kimia setelah hidrolisis asam. Hasil analisis termal menggunakan metode thermogravimetric analysis (TGA) menunjukkan bahwa suhu degradasi nanoselulosa yang lebih tinggi menunjukkan stabilitas termal yang lebih baik dibandingkan serat daun nanas tanpa perlakuan. Hasil ini menunjukkan bahwa residu serat daun nanas dapat menjadi sumber nanoselulosa yang bernilai komersial sebagai penguat dalam bionanokomposit film pati. Penambahan 2% berat kering nanoselulosa dalam film pati menghasilkan kekuatan tarik maksimum 9,8±0,8 MPa, nilai tersebut 160% lebih tinggi dibandingkan dengan film tanpa penambahan nanoselulosa. Penambahan nanoselulosa tertinggi menghasilkan serapan air, permeabilitas uap air terendah, dan ketahanan termal tertinggi dari film bionanokomposit. Sifat-sifat bionanokomposit dalam penelitian ini menunjukkan potensi terhadap bahan baku terbarukan ini untuk aplikasi kemasan makanan sekali pakai. Kata kunci: Serat daun nanas, nanoselulosa, pati bengkuang, bionanokomposi

    Cellulose-based Material for Sound Absorption And Its Application – A Short Review

    Get PDF
    Cellulose is a natural fiber potentially used as a sound absorber material due to its excellent properties, biodegradability, and lower environmental impact than synthetic materials and can be sourced from various plant-based materials, such as wood, Cotton, and Hemp. Which effectively traps and absorbs sound waves. The fibers dissipate the energy of sound waves as they pass through the material and absorb sound energy across a wide range of frequencies. Cellulose can be installed as loose-fill insulation, rigid panel form, composite with other matrix material, or foam. It's important to note that the specific characteristics and performance of cellulose-based sound absorbers can vary depending on the manufacturing process, fiber treatment, and the overall design of the sound-absorbing material. The size of cellulose fibers used in sound absorption can impact their effectiveness. Microfiber and nanofiber cellulose show different sound absorption characteristics. Microfiber has a good absorption coefficient at lower frequencies, and nanofiber cellulose performs better at higher frequency ranges. This paper involves a shortreview study of experimental methods and parameters used to regulate cellulose's sound absorption performance, which seems to be a potential alternative as an acoustic absorber, thereby reducing sustainability concerns related to synthetic materials in acoustics applications

    Pengaruh Kombinasi Antara Fotodegradasi dan H2O2 Terhadap Karakteristik Mikroplastik dari Limbah Disposable Face Mask

    Get PDF
    Penelitian ini dilakukan untuk mengetahui pengaruh lama iradiasi sinar UV dan penambahan H2O2 terhadap karakteristik mikroplastik limbah disposable face mask (DFM). DFM atau masker sekali pakai terbuat dari bahan polipropilen memiliki sifat hidrofobik yang tinggi sehingga proses degradasi tidak dapat berlangsung secara maksimal. Fotodegradasi UV dan penambahan H2O2 merupakan salah satu metode yang dapat digunakan untuk memodifikasi struktur kimia dari mikroplasatik dengan membentuk gugus fungsi aktif seperti gugus karbonil dan gugus hidroksil. Fotodegradasi sinar UV dilakukan dengan memvariasikan lama waktu iradiasi sinar UV yaitu 24; 36; 48; 60; 72 jam untuk sampel tanpa dan dengan penambahan H2O2 1% v/v. Hasil proses fotodegradasi dikarakterisasi berdasarkan kandungan dari sampel, yaitu perubahan struktur kimia yang dianalisa menggunakan Fourier Transform Infrared (FTIR), perubahan morfologi permukaan mikroplastik dianalisa menggunakan mikroskop binokuler dan persentase penurunan berat mikroplastik dianalisa menggunakan metode gravimetri. Penelitian ini didapatkan hasil terbaik fotodegradasi tanpa H2O2 terjadi pada waktu 36 jam dan hasil terbaik fotodegradasi dengan kombinasi penambahan H2O2 terjadi pada waktu 60 jam berdasarkan penurunan persen transmitansi terbesar gugus karbonil (C=O) yang dianalisis menggunakan FTIR sehingga terjadi penurunan hidrofobisitas pada DFM walaupun tidak siginifikan. Penambahan H2O2 1% v/v tidak memberikan pengaruh signifikan terhadap perubahan karakteristik sampel yang difotodegradasi yang dibuktikan dengan hasil analisis FTIR, perubahan struktur permukaan sampel DFM dan berat yang hilang dari sampel DFM setelah proses fotodegradasi. Berat yang hilang dari sampel setelah proses fotodegradasi sebesar 0,43% tanpa penambahan H2O2 dan 0,29% dengan penambahan H2O2 dengan waktu iradiasi selama 72 jam(α < 1%)

    SIFAT MEKANIK DARI BIOKOMPOSIT FILM PATI UBI KAYU DENGAN PENGUAT SERAT AKAR BUAH NAGA (HYLOCEREUS POLYRHIZUS)

    Get PDF
    Dragon fruit root fiber used as a reinforcement in the biocomposites film of cassava starch. The production method of biocomposites film was solution casting. The cassava starch serves as the matrix in the biocomposites film. The variation of amount fiber in matrix was 2, 4 and 6% &nbsp;from dry starch weight basis. Isolation of dragon fruit root fiber used alkalization and bleaching process with NaOH, NaClO2 and CH3COOH, respectively. Glycerol was used as plasticizers. Mechanical properties of biocomposites was determined by tensile test. The result shows that, tensile strength increased 200% after the addition of 6% fiber compared to pure starch film. Tensile test data was supported by X-Ray Difraction (XRD). Keywords: Biocomposite, Cassava Starch, Dragon fruit root fiber, Mechanical properties, XRD

    FTIR and Moisture Absorption of Yam Bean Starch Biocomposites with Yam Bean (Pachyrhizus erosus) Bagasse Fibers as Reinforcement

    Get PDF
    Biocomposites from yam bean starch with yam bean bagasse (YBB) fibers as reinforcement has been successfully fabricated. The fabrication method was solution casting. YBB was variated for 1, 2, 3 and 4wt% (from dry weight starch basis). 2 mL glycerol was used as a plasticizer. The relative humidity (RH) condition in moisture testing was 99%. The result shows that the addition YBB able to decreased moisture absorption of starch film. The lowest moisture absorption was in biocomposites with 4wt% YBB. The moisture absorption test was supported byfourier transform infrared (FTIR) data.Keywords: Biocomposite, yam bean, yam bean bagasse, moisture, FTI

    Aplikasi Serat Alam Muntingia calabura sebagai Pengisi dalam Biokomposit Bermatriks Polivinil Alkohol (PVA): Karakteristik Sifat Kuat Tarik dan Permukaan Patahan

    Get PDF
    Pemanfaatan serat alam Muntingia calabura sebagai pengisi bahan biokomposit belum dimanfaatkan secara optimal. Penggunaan serat alam ini memiliki potensi yang baik sebagai bahan pengisi biokomposit. Tujuan penelitian ini adalah untuk mengetahui pengaruh volume fraksi serat terhadap kekuatan tarik dan permukaan patahan biokomposit Polivinil Alkohol (PVA) dan Muntingia calabura. Volume fraksi serat di dalam PVA divariasikan 0%, 2%, 4%, 6% dan 8% (dari berat kering PVA). Pembuatan biokomposit menggunakan metode penuangan larutan gelatin. Biokomposit dikeringkan dalam suhu 70 ᵒC selama 12 jam. Setelah itu, spesimen biokomposit dipotong sesuai standar American Society for Testing and Materials (ASTM) D882-18. Hasil pengujian tarik menunjukkan bahwa peningkatan volume fraksi serat di dalam PVA mengakibatkan penurunan kekuatan tarik. Nilai kuat tarik tertinggi terdapat pada spesimen film PVA murni adalah 6,8 MPa. Penambahan serat sebesar 2% menyebabkan penurunan sebesar 14,7% dari nilai kuat tarik film PVA. Fenomena tersebut juga terjadi pada penambahan serat 4 – 8% di dalam matriks PVA. Hal tersebut didukung oleh pengataman Scanning Electron Microscope (SEM) yang menunjukkan adanya penggumpalan serat di dalam matriks

    PENGARUH LAMA WAKTU PENGGETARAN ULTRASONIC BATH TERHADAP SIFAT MEKANIK DAN MORFOLOGI PATAHAN BIOKOMPOSIT PATI TAPIOKA/SERAT RAMI (BOEHMERIA NIVEA)

    Get PDF
    This study reported about mechanical properties and fracture surface of ramie fiber reinforced tapioca starch based biocomposites. The amount of fibers in matrix was kept constant at 10% from dry weight starch basis. Fabrication of biocomposites was solution casting. The effect of vibration duration from ultrasonic bath was 0, 15, 30, and 45 min. This treatment was applied to biocomposites while gelatinized. Tensile test was carried out to determine the mechanical properties of biocomposites. Fracture surface of biocomposites after tensile test was observed by using scanning electron microscopy (SEM). The result shows that, tensile strength increased when vibration time was added. The maximum tensile strength was obtained at 45 min vibration time with 2,84 MPa. This phenomenon was supported by SEM observation which indicate compact structure. Keywords: Tapioca starch, ramie fiber, biocomposites, mechanical properties, SE

    CHARACTERIZATION OF THE SONICATED YAM BEAN STARCH BIONANOCOMPOSITES REINFORCED BY NANOCELLULOSE WATER HYACINTH FIBER (WHF): THE EFFECT OF VARIOUS FIBER LOADING

    Get PDF
    Bionanocomposites based on a Yam Bean (Pachyrhizus spp.) (YB) starch matrix reinforced by nanocellulose Water Hyacinth Fiber (WHF) were produced using a casting method. The amount of nanocellulose suspension in the matrix was varied from 0 to 1 wt%. After gelation, the bionanocomposites were sonicated for 1 min. The effect of nanocellulose suspension loading on the YB starch matrix was analysed using tensile tests, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) and moisture absorption. The fracture surface of bionanocomposites is rougher than pure YB starch film. Tensile Strength (TS) and Tensile Modulus (TM) were significantly improved after addition of nanocellulose. The highest values for TS (5.8 MPa) and TM (403 MPa) were obtained using the highest proportion of nanocellulose (1 wt%). Crystallinity Index (CrI) of bionanocomposite increased more than 200% with additional nanocellulose just lower than 1 wt%. Thermal stability and moisture resistance were also raised with increasing nanocellulose loading. This bionanocomposite's mechanical and thermal properties suggest it could be suitable for food packaging

    Isolation and characterization of cellulose nanofibers from agave gigantea by chemical-mechanical treatment

    Get PDF
    Nanocellulose is a renewable and biocompatible nanomaterial that evokes much interest because of its versatility in various applications. This study reports the production of nanocellulose from Agave gigantea (AG) fiber using the chemical-ultrafine grinding treatment. Chemical treatment (alkalization and bleaching) removed non-cellulose components (hemicellulose and lignin), while ultrafine grinding reduced the size of cellulose microfibrils into nanocellulose. From the observation of Transmission Electron Microscopy, the average diameter of nanocellulose was 4.07 nm. The effect of chemical-ultrafine grinding on the morphology and properties of AG fiber was identified using chemical composition, Scanning Electron Microscopy, X-ray Diffraction, Fourier Transform Infrared, and Thermogravimetric Analysis. The bleaching treatment increased the crystal index by 48.3% compared to raw AG fiber, along with an increase in the cellulose content of 20.4%. The ultrafine grinding process caused a decrease in the crystal content of the AG fiber. The crystal index affected the thermal stability of the AG fiber. The TGA results showed that AG fiber treated with bleaching showed the highest thermal stability compared to AG fiber without treatment. The FTIR analysis showed that the presence of C–H vibrations from the ether in the fiber. After chemical treatment, the peaks at 1605 and 1243 cm−1 disappeared, indicating the loss of lignin and hemicellulose functional groups in AG fiber. As a result, nanocellulose derived from AG fiber can be applied as reinforcement in environmentally friendly polymer biocomposites

    Highly transparent and antimicrobial PVA based bionanocomposites reinforced by ginger nanofiber

    Get PDF
    Good transparency, antimicrobial, physical, and tensile properties of the biodegradable film can be necessary for food packaging. The aim of this study is to characterize these properties of the poly(vinyl alcohol) (PVA)/ginger nanofiber (GF) bionanocomposite film. This nanofiber of 0.21, 0.31 and 0.41 g in suspensions, was mixed with PVA gel using ultrasonication. After addition of ginger nanofibers, the bionanocomposite film shows antibacterial activity but does not have antifungi activity. Increasing the nanofiber into PVA increases significantly in tensile properties, water vapour impermeability, and moisture resistance. Tensile strength, the temperature at maximum film decomposition, and moisture resistance (after 8 h) of the 0.41 g ginger nanofiber reinforced film were 44.2 MPa (increased by 65.6%), 349.4 °C (increased by 7%), and 6.1% (decreased by 18.7%), respectively compared to pure PVA. With this nanofiber loading, the transparency of the bionanocomposite film decreased slightly. These results suggest this bionanocomposite film has potential in food packaging in industrial applications
    corecore