21 research outputs found

    SLC25A51 is a mammalian mitochondrial NAD+ transporter

    Get PDF
    Mitochondria require nicotinamide adenine dinucleotide (NAD+) to carry out the fundamental processes that fuel respiration and mediate cellular energy transduction. Mitochondrial NAD+ transporters have been identified in yeast and plants1,2, but their existence in mammals remains controversial3,4,5. Here we demonstrate that mammalian mitochondria can take up intact NAD+, and identify SLC25A51 (also known as MCART1)—an essential6,7 mitochondrial protein of previously unknown function—as a mammalian mitochondrial NAD+ transporter. Loss of SLC25A51 decreases mitochondrial—but not whole-cell—NAD+ content, impairs mitochondrial respiration, and blocks the uptake of NAD+ into isolated mitochondria. Conversely, overexpression of SLC25A51 or SLC25A52 (a nearly identical paralogue of SLC25A51) increases mitochondrial NAD+ levels and restores NAD+ uptake into yeast mitochondria lacking endogenous NAD+ transporters. Together, these findings identify SLC25A51 as a mammalian transporter capable of importing NAD+ into mitochondria.acceptedVersio

    Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal alpha-toxin

    Get PDF
    The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor kappa B signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor alpha-toxin. Naturally elicited antibodies against alpha-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to alpha-toxin in nonleukocytic cells.Peer reviewe

    Deficiency of Interleukin-1 Receptor Antagonist: A Case with Late Onset Severe Inflammatory Arthritis, Nail Psoriasis with Onychomycosis and Well Responsive to Adalimumab Therapy

    No full text
    WOS: 000481922900001PubMed ID: 31467740DIRA (deficiency of the IL-1Ra) is a rare condition that usually presents in the neonatal period. Patients with DIRA present with systemic inflammation, respiratory distress, joint swelling, pustular rash, multifocal osteomyelitis, and periostitis. Previously, we reported a patient with a novel mutation in IL1RN with a healthy neonatal period, a late-onset of pustular dermatosis, inflammatory arthritis, and excellent response to canakinumab treatment. Herein, we are presenting a new case of late-onset DIRA syndrome, carrying a different mutation and showing different clinical findings. This patient is the first one in the literature with the inflammatory arthritis, nail psoriasis, and onychomycosis and with her remarkable response to monoclonal antibodies. The case responded well and fully recovered after treatment with adalimumab, but not with canakinumab. The DIRA disease can lead to death from multiple organ failures and if recognized early, the treatment with replacement of the deficient protein with biologic agents induces rapid and complete remission. Therefore, clinical symptoms should be learned exactly by the pediatricians, pediatric rheumatologists, and immunologists; and molecular analysis targeting this defect must be performed as early as possible

    Gain-of-Function Mutations in STAT1: A Recently Defined Cause for Chronic Mucocutaneous Candidiasis Disease Mimicking Combined Immunodeficiencies

    No full text
    WOS: 000415059900001PubMed ID: 29259832Chronic Mucocutaneous Candidiasis (CMC) is the chronic, recurrent, noninvasive Candida infections of the skin, mucous membranes, and nails. A 26-month-old girl was admitted with the complaints of recurrent oral Candidiasis, diarrhea, and respiratory infections. Candida albicans grew in oral mucosa swab. CMV and EBV DNA titers were elevated. She had hypergammaglobulinemia; IgE level, percentages of lymphocyte subgroups, and in vitro T-cell proliferation responses were normal. She had parenchymal nodules within the lungs and a calcific nodule in the liver. Chronic-recurrent infections with different pathogens leading to significant morbidity suggested combined immunodeficiency, CMC, or Mendelian susceptibility to mycobacterial diseases. Genetic analysis revealed a predefined heterozygous gain-of-function mutation (GOF) (c.1154 C>T, p.Thr385Met) in the gene coding STAT1 molecule. Hematopoietic stem cell transplantation (HSCT) was planned because of severe recurring infections. Patients with STAT1GOFmutations may exhibit diverse phenotypes including infectious and noninfectious findings. HSCT should be considered as an early treatment option before permanent organ damage leading tomorbidity andmortality develops. This case is presented to prompt clinicians to consider STAT1GOFmutations in the differential diagnosis of patientswith chronic Candidiasis and recurrent infections with multiple organisms, since these mutations are responsible for nearly half of CMC cases reported

    SLC25A51 is a mammalian mitochondrial NAD+ transporter

    No full text
    Mitochondria require nicotinamide adenine dinucleotide (NAD+) to carry out the fundamental processes that fuel respiration and mediate cellular energy transduction. Mitochondrial NAD+ transporters have been identified in yeast and plants1,2, but their existence in mammals remains controversial3,4,5. Here we demonstrate that mammalian mitochondria can take up intact NAD+, and identify SLC25A51 (also known as MCART1)—an essential6,7 mitochondrial protein of previously unknown function—as a mammalian mitochondrial NAD+ transporter. Loss of SLC25A51 decreases mitochondrial—but not whole-cell—NAD+ content, impairs mitochondrial respiration, and blocks the uptake of NAD+ into isolated mitochondria. Conversely, overexpression of SLC25A51 or SLC25A52 (a nearly identical paralogue of SLC25A51) increases mitochondrial NAD+ levels and restores NAD+ uptake into yeast mitochondria lacking endogenous NAD+ transporters. Together, these findings identify SLC25A51 as a mammalian transporter capable of importing NAD+ into mitochondria

    Haploinsufficiency at the human IFNGR2 locus contributes to mycobacterial disease

    No full text
    Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare syndrome, the known genetic etiologies of which impair the production of, or the response to interferon-gamma (IFN-Îł). We report here a patient (P1) with MSMD whose cells display mildly impaired responses to IFN-Îł, at levels, however, similar to those from MSMD patients with autosomal recessive (AR) partial IFN-ÎłR2 or STAT1 deficiency. Whole-exome sequencing (WES) and Sanger sequencing revealed only one candidate variation for both MSMD-causing and IFN-Îł-related genes. P1 carried a heterozygous frame-shift IFNGR2 mutation inherited from her father. We show that the mutant allele is intrinsically loss-of-function and not dominant-negative, suggesting haploinsufficiency at the IFNGR2 locus. We also show that Epstein-Barr virus transformed B lymphocyte cells from 10 heterozygous relatives of patients with AR complete IFN-ÎłR2 deficiency respond poorly to IFN-Îł, in some cases as poorly as the cells of P1. Naive CD4(+) T cells and memory IL-4-producing T cells from these individuals also responded poorly to IFN-Îł, whereas monocytes and monocyte-derived macrophages (MDMs) did not. This is consistent with the lower levels of expression of IFN-ÎłR2 in lymphoid than in myeloid cells. Overall, MSMD in this patient is probably due to autosomal dominant (AD) IFN-ÎłR2 deficiency, resulting from haploinsufficiency, at least in lymphoid cells. The clinical penetrance of AD IFN-ÎłR2 deficiency is incomplete, possibly due, at least partly, to the variability of cellular responses to IFN-Îł in these individuals

    Partial IFN-gamma R2 deficiency is due to protein misfolding and can be rescued by inhibitors of glycosylation

    No full text
    WOS: 000326078200022PubMed ID: 23963039We report a molecular study of the two known patients with autosomal recessive, partial interferon-gamma receptor (IFN-gamma R)2 deficiency (homozygous for mutations R114C and G227R), and three novel, unrelated children, homozygous for S124F (P1) and G141R (P2 and P3). IFN-gamma R2 levels on the surface of the three latter patients' cells are slightly lower than those on control cells. The patients' cells also display impaired, but not abolished, response to IFN-gamma. Moreover, the R114C, S124F, G141R and G227R IFNGR2 hypomorphic alleles all encode misfolded proteins with abnormal N-glycosylation. The mutants are largely retained in the endoplasmic reticulum, although a small proportion reach and function at the cell surface. Strikingly, the IFN-gamma response of the patients' cells is enhanced by chemical modifiers of N-glycosylation, as previously shown for patients with gain-of-glysosylation T168N and misfolding 382-387dup null mutations. All four in-frame IFNGR2 hypomorphic mutant alleles encoding surface-expressed receptors are thus deleterious by a mechanism involving abnormal N-glycosylation and misfolding of the IFN-gamma R2 protein. The diagnosis of partial IFN-gamma R2 deficiency is clinically useful, as affected patients should be treated with IFN-, unlike patients with complete IFN-gamma R2 deficiency. Moreover, inhibitors of glycosylation might be beneficial in patients with complete or partial IFN-gamma R2 deficiency due to misfolding or gain-of-glycosylation receptors.European Research CouncilEuropean Research Council (ERC) [ERC-2010-AdG-268777]; Institut National de la Sante et de la Recherche Medicale, University Paris Descartes, French National Agency for Research (ANR)French National Research Agency (ANR); EUEuropean Union (EU) [HEALTH-F3-2008-200732]; Bill and Melinda Gates FoundationGates Foundation; St. Giles Foundation; Jeffrey Modell Foundation; Talecris Biotherapeutics; Rockefeller University Center for Clinical and Translational Science from the National Center for Research Resources and the National Center for Advancing Sciences (NCATS) [8UL1TR000043]; Rockefeller University; National Institute of Allergy and Infectious DiseasesUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Allergy & Infectious Diseases (NIAID) [1R01AI089970]; EMBO Long Term Fellowship program; Stony Wold-Herbert Fund; Choh-Hao Li Memorial Fund Scholar award; Shanghai Educational Development Foundation; AXA Research Fund; Fondation Medicale Medische Stichting Mathilde E. Horlait-DapsensThis work was supported by grants from the European Research Council (ERC-2010-AdG-268777), Institut National de la Sante et de la Recherche Medicale, University Paris Descartes, French National Agency for Research (ANR), the EU-grant HOMITB (grant HEALTH-F3-2008-200732), the Bill and Melinda Gates Foundation, the St. Giles Foundation, the Jeffrey Modell Foundation, and Talecris Biotherapeutics, Rockefeller University Center for Clinical and Translational Science grant 8UL1TR000043 from the National Center for Research Resources and the National Center for Advancing Sciences (NCATS), the Rockefeller University, and the National Institute of Allergy and Infectious Diseases (grant 1R01AI089970). R.M.-B. is supported by the EMBO Long Term Fellowship program. X.-F.K. is supported by the Stony Wold-Herbert Fund, Choh-Hao Li Memorial Fund Scholar award, and the Shanghai Educational Development Foundation, Y.I. was supported by the AXA Research Fund. V.L.B. was supported by the Stony Wold-Herbert Fund, and A.Y.K. was supported by the Fondation Medicale Medische Stichting Mathilde E. Horlait-Dapsens

    Genetic inhibition of CARD9 accelerates the development of atherosclerosis in mice through CD36 dependent-defective autophagy

    No full text
    International audienceAbstract Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe -/- mice as well as hematopoietic deletion in Ldlr -/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe -/- Rag2 -/- Card9 -/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ÎČ production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9 -deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy
    corecore