452 research outputs found

    Multi-wavelength analysis of the field of the dark burst GRB 031220

    Full text link
    We have collected and analyzed data taken in different spectral bands (from X-ray to optical and infrared) of the field of GRB031220 and we present results of such multiband observations. Comparison between images taken at different epochs in the same filters did not reveal any strong variable source in the field of this burst. X-ray analysis shows that only two of the seven Chandra sources have a significant flux decrease and seem to be the most likely afterglow candidates. Both sources do not show the typical values of the R-K colour but they appear to be redder. However, only one source has an X-ray decay index (1.3 +/- 0.1) that is typical for observed afterglows. We assume that this source is the best afterglow candidate and we estimate a redshift of 1.90 +/- 0.30. Photometric analysis and redshift estimation for this object suggest that this GRB can be classified as a Dark Burst and that the obscuration is the result of dust extinction in the circum burst medium or inside the host galaxy.Comment: 7 pages, 5 figures, accepted for publication on A&

    Multiwavelength chase of GRB 031220 afterglow

    Get PDF
    Several gamma ray bursts (GRBs) with X-ray afterglow do not show any optical-IR afterglow. The nature of this class of events, the so-called Dark Bursts, is still not clear. The optical absorption could be due to the interstellar dust or to the high redshift of the event. Or, more simply, the non-detection of the optical transient should be due to the delay in the observation or to the rapid energy decaying of these events. High spatial resolution X-ray observations are the most promising tool to investigate on such kind of events. We have collected and analyzed X-ray data and images taken in different spectral bands (optical and infrared) for GRB 031220 and we present the results of the analysis of multiband observations on the field of this burst. Comparison between images taken at different epochs in the same filters did not reveal any strongly variable sources. Photometric analysis and photometric redshift estimation of all possible afterglow candidates suggest that this GRB can be classifie d as a Dark Burst

    A Competition between Relative Stability and Binding Energy in Caffeine Phenyl-Glucose Aggregates: Implications in Biological Mechanisms

    Get PDF
    Hydrogen bonds and stacking interactions are pivotal in biological mechanisms, although their proper characterisation within a molecular complex remains a difficult task. We used quantum mechanical calculations to characterise the complex between caffeine and phenyl-beta-D-glucopyranoside, in which several functional groups of the sugar derivative compete with each other to attract caffeine. Calculations at different levels of theory (M06-2X/6-311++G(d,p) and B3LYP-ED=GD3BJ/def2TZVP) agree to predict several structures similar in stability (relative energy) but with different affinity (binding energy). These computational results were experimentally verified by laser infrared spectroscopy, through which the caffeine center dot phenyl-beta-D-glucopyranoside complex was identified in an isolated environment, produced under supersonic expansion conditions. The experimental observations correlate with the computational results. Caffeine shows intermolecular interaction preferences that combine both hydrogen bonding and stacking interactions. This dual behaviour had already been observed with phenol, and now with phenyl-beta-D-glucopyranoside, it is confirmed and maximised. In fact, the size of the complex's counterparts affects the maximisation of the intermolecular bond strength because of the conformational adaptability given by the stacking interaction. Comparison with the binding of caffeine within the orthosteric site of the A2A adenosine receptor shows that the more strongly bound caffeine center dot phenyl-beta-D-glucopyranoside conformer mimics the interactions occurring within the receptor

    Evidence of a Two-Component Jet in the Afterglow of GRB 070419A

    Full text link
    A two-component jet model is proposed to explain the unusual afterglow of GRB 070419A. Regarding the optical light curve, a wide "jet" with an opening angle of > 30-40 degrees is assumed to produce the late shallow decay, while the three early power-law segments must be caused by a narrow jet with an opening angle of about 2-4 degrees. Additional energy injections to both components are required. Late X-ray emission may come from either the wide jet or the narrow one. If the latter is correct, the jets may run into an ISM environment and the temporal index of the late energy injection q may be about 0.65.Comment: 3 pages, PDF only, accepted for publication in Science in China Series

    The circumburst environment of a FRED GRB: study of the prompt emission and X-ray/optical afterglow of GRB 051111

    Get PDF
    We report a multi-wavelength analysis of the prompt emission and early afterglow of GRB051111 and discuss its properties in the context of current fireball models. The detection of GRB051111 by the Burst Alert Telescope on-board Swift triggered early BVRi' observations with the 2-m robotic Faulkes Telescope North in Hawaii, as well as X-ray observations with the Swift X-Ray Telescope. The prompt gamma-ray emission shows a classical FRED profile. The optical afterglow light curves are fitted with a broken power law, with alpha_1=0.35 to alpha_2=1.35 and a break time around 12 minutes after the GRB. Although contemporaneous X-ray observations were not taken, a power law connection between the gamma-ray tail of the FRED temporal profile and the late XRT flux decay is feasible. Alternatively, if the X-ray afterglow tracks the optical decay, this would represent one of the first GRBs for which the canonical steep-shallow-normal decay typical of early X-ray afterglows has been monitored optically. We present a detailed analysis of the intrinsic extinction, elemental abundances and spectral energy distribution. From the absorption measured in the low X-ray band we find possible evidence for an overabundance of some alpha elements such as oxygen, [O/Zn]=0.7+/-0.3, or, alternatively, for a significant presence of molecular gas. The IR-to-X-ray Spectral Energy Distribution measured at 80 minutes after the burst is consistent with the cooling break lying between the optical and X-ray bands. Extensive modelling of the intrinsic extinction suggests dust with big grains or grey extinction profiles. The early optical break is due either to an energy injection episode or, less probably, to a stratified wind environment for the circumburst medium.Comment: accepted to A&A on Nov. 10 (14 pages, 8 figures

    Spectrophotometric analysis of GRB afterglow extinction curves with X-shooter

    Get PDF
    In this work we use gamma-ray burst (GRB) afterglow spectra observed with the VLT/X-shooter spectrograph to measure rest-frame extinction in GRB lines-of-sight by modeling the broadband near-infrared (NIR) to X-ray afterglow spectral energy distributions (SEDs). Our sample consists of nine Swift GRBs, eight of them belonging to the long-duration and one to the short-duration class. Dust is modeled using the average extinction curves of the Milky Way and the two Magellanic Clouds. We derive the rest-frame extinction of the entire sample, which fall in the range 0AV1.20 \lesssim {\it A}_{\rm V} \lesssim 1.2. Moreover, the SMC extinction curve is the preferred extinction curve template for the majority of our sample, a result which is in agreement with those commonly observed in GRB lines-of-sights. In one analysed case (GRB 120119A), the common extinction curve templates fail to reproduce the observed extinction. To illustrate the advantage of using the high-quality X-shooter afterglow SEDs over the photometric SEDs, we repeat the modeling using the broadband SEDs with the NIR-to-UV photometric measurements instead of the spectra. The main result is that the spectroscopic data, thanks to a combination of excellent resolution and coverage of the blue part of the SED, are more successful in constraining the extinction curves and therefore the dust properties in GRB hosts with respect to photometric measurements. In all cases but one the extinction curve of one template is preferred over the others. We show that the modeled values of the extinction and the spectral slope, obtained through spectroscopic and photometric SED analysis, can differ significantly for individual events. Finally we stress that, regardless of the resolution of the optical-to-NIR data, the SED modeling gives reliable results only when the fit is performed on a SED covering a broader spectral region.Comment: 17 pages, 7 figures, 4 tables, accepted for publication in Astronomy & Astrophysic

    Immunological analytical techniques for cosmetics quality control and process monitoring

    Get PDF
    Cosmetics analysis represents a rapidly expanding field of analytical chemistry as new cosmetic formulations are increasingly in demand on the market and the ingredients required for their production are constantly evolving. Each country applies strict legislation regarding substances in the final product that must be prohibited or regulated. To verify the compliance of cosmetics with current regulations, official analytical methods are available to reveal and quantitatively determine the analytes of interest. However, since ingredients, and the lists of regulated/prohibited substances, rapidly change, dedicated analytical methods must be developed ad hoc to fulfill the new requirements. Research focuses on finding innovative techniques that allow a rapid, inexpensive, and sensitive detection of the target analytes in cosmetics. Among the different methods proposed, immunological techniques are gaining interest, as they make it possible to carry out low-cost analyses on raw materials and finished products in a relatively short time. Indeed, immunoassays are based on the specific and selective antibody/antigen reaction, and they have been extensively applied for clinical diagnostic, alimentary quality control and environmental security purposes, and even for routine analysis. Since the complexity and variability of the matrices, as well as the great variety of compounds present in cosmetics, are analogous with those from food sources, immunological methods could also be applied successfully in this field. Indeed, this would provide a valid approach for the monitoring of industrial production chains even in developing countries, which are currently the greatest producers of cosmetics and the major exporters of raw materials. This review aims to highlight the immunological techniques proposed for cosmetics analysis, focusing on the detection of prohibited/regulated compounds, bacteria and toxins, and allergenic substances, and the identification of counterfeits

    Identifying the Location in the Host Galaxy of the Short GRB 111117A with the Chandra Sub-arcsecond Position

    Full text link
    We present our successful Chandra program designed to identify, with sub-arcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31_{-0.23}^{+0.46} (90% confidence), making it one of the highest known short GRB redshifts. Furthermore, we see an offset of 1.0 +- 0.2 arcseconds, which corresponds to 8.4 +- 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond X-ray localizations of short GRB afterglows to study GRB environments.Comment: 17 pages, 11 figures, accepted for publication in Ap

    The high-redshift gamma-ray burst GRB140515A

    Get PDF
    High-redshift gamma-ray bursts have several advantages for the study of the distant universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of the class of such distant events. We present the multi-wavelength analysis of the high-zz Swift gamma-ray burst GRB140515A (z=6.327z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium (IGM) towards the burst is xHI0.002x_{HI} \leq 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in gamma-ray burst afterglows, suggesting that GRB140515A exploded in a very low density environment. Its circum-burst medium is characterised by an average extinction (AV0.1_{\rm V} \sim 0.1) that seems to be typical of z6z \ge 6 events. The observed multi-band light curves are explained either with a very flat injected spectrum (p=1.7p = 1.7) or with a multi-component emission (p=2.1p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. The possible origin of GRB140515A from a Pop III (or from a Pop II stars with local environment enriched by Pop III) massive star is unlikely.Comment: 10 pages, 8 figures, 5 tables, submitted to Astronomy & Astrophysic

    GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang

    Full text link
    We present optical and near-infrared observations of the afterglow of the gamma-ray burst GRB 050904. We derive a photometric redshift z = 6.3, estimated from the presence of the Lyman break falling between the I and J filters. This is by far the most distant GRB known to date. Its isotropic-equivalent energy is 3.4x10^53 erg in the rest-frame 110-1100 keV energy band. Despite the high redshift, both the prompt and the afterglow emission are not peculiar with respect to other GRBs. We find a break in the J-band light curve at t_b = 2.6 +- 1.0 d (observer frame). If we assume this is the jet break, we derive a beaming-corrected energy E_gamma = (4-12)x10^51 erg. This limit shows that GRB 050904 is consistent with the Amati and Ghirlanda relations. This detection is consistent with the expected number of GRBs at z > 6 and shows that GRBs are a powerful tool to study the star formation history up to very high redshift.Comment: 3 figures, 5 pages, accepted for publication in A&A Letters. One figure added, minor modifications. Full author list in the pape
    corecore