9 research outputs found

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    12 pags., 4 figs., 3 tabs.SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.Work at BMRZ is supported by the state of Hesse. Work in Covid19-NMR was supported by the Goethe Corona Funds, by the IWBEFRE-program 20007375 of state of Hesse, the DFG through CRC902: “Molecular Principles of RNA-based regulation.” and through infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611) and by European Union’s Horizon 2020 research and innovation program iNEXT-discovery under grant agreement No 871037. BY-COVID receives funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement number 101046203. “INSPIRED” (MIS 5002550) project, implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011-285950—“SEE-DRUG” project (purchase of UPAT’s 700 MHz NMR equipment). The support of the CERM/CIRMMP center of Instruct-ERIC is gratefully acknowledged. This work has been funded in part by a grant of the Italian Ministry of University and Research (FISR2020IP_02112, ID-COVID) and by Fondazione CR Firenze. A.S. is supported by the Deutsche Forschungsgemeinschaft [SFB902/B16, SCHL2062/2-1] and the Johanna Quandt Young Academy at Goethe [2019/AS01]. M.H. and C.F. thank SFB902 and the Stiftung Polytechnische Gesellschaft for the Scholarship. L.L. work was supported by the French National Research Agency (ANR, NMR-SCoV2-ORF8), the Fondation de la Recherche MĂ©dicale (FRM, NMR-SCoV2-ORF8), FINOVI and the IR-RMN-THC Fr3050 CNRS. Work at UConn Health was supported by grants from the US National Institutes of Health (R01 GM135592 to B.H., P41 GM111135 and R01 GM123249 to J.C.H.) and the US National Science Foundation (DBI 2030601 to J.C.H.). Latvian Council of Science Grant No. VPP-COVID-2020/1-0014. National Science Foundation EAGER MCB-2031269. This work was supported by the grant Krebsliga KFS-4903-08-2019 and SNF-311030_192646 to J.O. P.G. (ITMP) The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020—Grant Agreement Number 101017536. Open Access funding enabled and organized by Projekt DEALPeer reviewe

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form

    Structural dynamics of m6A formation in mRNA

    No full text
    N6-Methyladenosin (m6A) ist die hĂ€ufigste Modifikation in eukaryotischer mRNA. Der menschliche N6-Methyltransferasekomplex (MTC) methyliert cotranskriptionell das zentrale Adenin innerhalb eines RRACH- (vorzugsweise GGACU-) Sequenzkontextes in der naszierenden RNA. Der katalytische Kern dieses Komplexes wird von den beiden Proteinen METTL3 und METTL14 gebildet, wobei sich das aktive Zentrum in der Methyltransferase-DomĂ€ne (MTD) von METTL3 befindet. Des Weiteren bindet eine Reihe weiterer Proteine (WTAP, VIRMA, RBM15, ZC3H13 und HAKAI) an das zentrale METTL3-METTL14-Heterodimer, wobei WTAP als Bindeplattform fungiert. Im ersten Kapitel dieser Arbeit wurde der Einfluss der SekundĂ€rstruktur der Substrat-RNA auf die Methylierungseffizienz des METTL3/METTL14-Komplexes analysiert. Dies wurde durch enzymatische AktivitĂ€tstests an Substrat-RNAs mit unterschiedlichen strukturellen Kontexten untersucht. Die höchste Methylierungseffizienz wurde dabei fĂŒr eine unstrukturierte RNA beobachtet. Die Ergebnisse zeigten, dass eine wenig stabile Zielstruktur und die Möglichkeit der Proteinbindung auf beiden Seiten der Zielsequenz fĂŒr eine effiziente Katalyse besonders wichtig sind. VerĂ€nderungen der GGACU-Sequenz innerhalb des RRACH-Sequenzkontexts verringerten die Methylierungsausbeute, wobei die zentrale GAC-Sequenz von besonderer Bedeutung war. Wir beobachteten einen stĂ€rkeren Einfluss des RRACH-Sequenzkontextes auf die Methylierungseffizienz in einer haarnadelstrukturierten RNA als fĂŒr die unstrukturierte RNA. Zusammengenommen zeigten die Ergebnisse einen Einfluss der RNA-SekundĂ€rstruktur und der Zielsequenz auf die Methylierungseffizienz des METTL3/METTL14-Komplexes mit Ă€hnlich starker AusprĂ€gung in vitro. Um einen Einblick in den Einfluss der einzelnen METTL3/METTL14-ProteindomĂ€nen auf die RNA-Katalyse zu erhalten, wurden sechs verschiedene verkĂŒrzte Proteinkomplexe exprimiert und aufgereinigt. Die VerkĂŒrzung der Proteine konzentrierte sich hauptsĂ€chlich auf die (postulierten) RNA-BindungsdomĂ€nen des Kernkomplexes. Die MethylierungsaktivitĂ€t aller Komplexe mit fehlenden RNA-BindedomĂ€nen war deutlich reduziert, was fast immer mit einer verringerten RNA-Bindeeigenschaft einherging und damit diese DomĂ€nen wichtig fĂŒr die Katalyse macht. Es wurde gezeigt, dass die aus zwei einzelnen Zinkfingern bestehende ZinkfingerdomĂ€ne (ZFD) in METTL3 fĂŒr die Katalyse in voller LĂ€nge vorhanden sein muss, wĂ€hrend ein einzelner Zinkfinger fĂŒr die RNA-Bindung ausreicht. Bei weiteren Experimenten mit einer haarnadelstrukturierten RNA wurde die bereits beschriebene RNA-StrukturabhĂ€ngigkeit des Methylierungsprozesses noch einmal bestĂ€tigt. Es wurde darauf geschlossen, dass die katalytische RNA-Bindung vermutlich mit prĂ€ferierter Orientierung passiert und die allgemeine RNA-Bindung ĂŒber die RGG-DomĂ€ne in METTL14 auf der einen und die ZFD in METTL3 auf der anderen Seite der Zielsequenz vermittelt wird. Die eigentliche SequenzspezifitĂ€t wird wahrscheinlich erst bei der Bindung im aktiven Zentrum relevant. In den Ergebnissen der zuvor beschriebenen Experimente wurde ein besonderes Verhalten des Komplexes ohne N-terminale DomĂ€ne (NTD) in METTL3 beobachtet. Hier wurde im Gegensatz zu den anderen verkĂŒrzten Konstrukten eine erhöhte Methylierungseffizienz auf der unstrukturierten RNA festgestellt. Zudem konnte hier fast kein Einfluss der RNA-Struktur auf die Methylierungsausbeute beobachtet werden. Da dieser Bereich in METTL3 die Bindungsstelle fĂŒr WTAP enthĂ€lt, wurden die Experimente mit dem erweiterten Komplex (METTL3/METTL14/WATP) wiederholt. Die Ergebnisse zeigten eine deutlich reduzierte MethylierungsaktivitĂ€t auf strukturierten RNAs fĂŒr den Komplex mit WTAP im Vergleich zu dem METTL3/METTL14-Komplex. Das zeigt, dass die NTD in METTL3 eine besondere Rolle bei dem Einfluss der RNA-SekundĂ€rstruktur auf die MethylierungsaktivitĂ€t des Komplexes spielt. Im zweiten Teil der Arbeit wurde die Dynamik des MTC wĂ€hrend der Katalyse eingehend untersucht. ZunĂ€chst wurde ein smFRET Mikroskop mit individueller Software aufgebaut. Die folgenden Messungen mit einer fluoreszent markierten RNA und dem MTC ergaben deutliche Unterschiede zwischen dem katalytisch kompetenten und postkatalytischen Komplex. Es wurden vier unterschiedliche ZustĂ€nde und ÜbergĂ€nge zwischen diesen detektiert. Dabei wurde eine Kontraktion der RNA Konformation wĂ€hrend der Proteinbindung und Katalyse beobachtet. Der kontrahierteste Zustand der RNA war fĂŒr den katalytisch kompetenten Komplex deutlich stĂ€rker populiert als fĂŒr den postkatalytischen Komplex. Dieser Unterschied wurde durch Experimente mit einer abasischen RNA auf die Anwesenheit von Substrat- oder Produktnukleotid und nicht auf die Kofaktoren SAM oder SAH zurĂŒckgefĂŒhrt. Die gleichen Messungen wurden mit dem METTL3/METTL14/WTAP Komplex wiederholt und es zeigte sich ein Ă€hnliches Muster. Allerdings waren die Populationen generell eher zum kontrahiertesten Zustand verschoben und die beobachteten Dynamiken in Form von ÜbergĂ€ngen zwischen den ZustĂ€nden nahmen zu.N6-methyladenosine (m6A) is the most abundant and well understood modification in eukaryotic mRNA and was first identified in polyadenylated parts of the mRNA.The distinct distribution of m6A in the transcriptome with special enrichment in long internal exons, 39UTRs and around stop codons was uncovered by early biochemical work and later on antibody based sequencing techniques. The so called m6A writer, reader and eraser machinery is responsible for the dynamic and with that regulatory nature of the m6A modification. As m6A writer, the human N6-methyltransferase complex (MTC) cotranscriptionally methylates the central adenine within a RRACH (preferably GGACU) sequence context to form m6A in the nascent RNA chain.9–15 The catalytic core of the complex is formed by the two proteins METTL3 and METTL14, with the active site located in the methyltransferase domain (MTD) of METTL3.16–18 The DPPW motif near the methyl donor S-adenosylmethionine (SAM) binding site in this MTD was postulated to bind the target adenine during catalysis. Moreover, a positively charged groove in the METTL3-METTL14 interface, the C-terminal RGG domain in METTL14 and the zinc finger motifs in METTL3 were identified as important domains for RNA binding. However, to date there are no full-length or substrate-RNA-bound structures of the catalytic METTL3-METTL14 complex. In addition, a set of accessory proteins assembles to the METTL3-METTL14 heterodimer to form the full MTC, mediated by WTAP that firmly binds to the N-terminal leader helix in METTL3.20 WTAP was shown to locate the whole complex to the nuclear speckles and can modulate m6A deposition to specific sites in the RNA. Moreover, WTAP acts as binding platform for other accessory proteins including VIRMA, RBM15, ZC3H13 and HAKAI that are mostly identified to mediate position specific methylation. For example, RBM15 was shown to mediates region-selective methylation in a WTAP dependent manner, directing specificity towards U-rich sequences. The observed specificity of the methyltransferase complex to methylate only site specific DRACH sequenced is still poorly understood. Some possible modulators like the role of the accessory proteins are under investigation, however, the structural context of the RNA methylation sites or a structural preference of the complex have been mainly neglected so far. Moreover, the structural dynamics of this methylation process still remain elusive. This thesis contributes to the afore-mentioned aspects by analysis of the methylation process regarding RNA structure sensitivity with enzymatic activity assays and its dynamic nature by implementing a smFRET approach. We hypothesized the target RNA secondary structure to be an additional important modulator of methylation efficiency, based on the RNA binding elements of the complex (positively charged binding groove, zinc finger domain, RGG domain) and the supposed target adenine binding in the active site. Here, we postulated the possibility for a flipped-out adenine to be of special relevance, which is closely related to the local stability of the target adenine containing structure. Moreover, efficient binding of the protein complex to the RNA should require the ability to anchor the RNA on both sides of the target sequence

    Cooperative analysis of structural dynamics in rna-protein complexes by single-molecule förster resonance energy transfer spectroscopy

    No full text
    RNA-protein complexes (RNPs) are essential components in a variety of cellular processes, and oftentimes exhibit complex structures and show mechanisms that are highly dynamic in conformation and structure. However, biochemical and structural biology approaches are mostly not able to fully elucidate the structurally and especially conformationally dynamic and heterogeneous nature of these RNPs, to which end single molecule Förster resonance energy transfer (smFRET) spectroscopy can be harnessed to fill this gap. Here we summarize the advantages of strategic smFRET studies to investigate RNP dynamics, complemented by structural and biochemical data. Focusing on recent smFRET studies of three essential biological systems, we demonstrate that investigation of RNPs on a single molecule level can answer important functional questions that remained elusive with structural or biochemical approaches alone: The complex structural rearrangements throughout the splicing cycle, unwinding dynamics of the G-quadruplex (G4) helicase RHAU, and aspects in telomere maintenance regulation and synthesis

    Why are Hoogsteen base pairs energetically disfavored in A-RNA compared to B-DNA?

    No full text
    A(syn)-U/T and G(syn)-C+ Hoogsteen (HG) base pairs (bps) are energetically more disfavored relative to Watson–Crick (WC) bps in A-RNA as compared to B-DNA by >1 kcal/mol for reasons that are not fully understood. Here, we used NMR spectroscopy, optical melting experiments, molecular dynamics simulations and modified nucleotides to identify factors that contribute to this destabilization of HG bps in A-RNA. Removing the 2â€Č-hydroxyl at single purine nucleotides in A-RNA duplexes did not stabilize HG bps relative to WC. In contrast, loosening the A-form geometry using a bulge in A-RNA reduced the energy cost of forming HG bps at the flanking sites to B-DNA levels. A structural and thermodynamic analysis of purine-purine HG mismatches reveals that compared to B-DNA, the A-form geometry disfavors syn purines by 1.5–4 kcal/mol due to sugar-backbone rearrangements needed to sterically accommodate the syn base. Based on MD simulations, an additional penalty of 3–4 kcal/mol applies for purine-pyrimidine HG bps due to the higher energetic cost associated with moving the bases to form hydrogen bonds in A-RNA versus B-DNA. These results provide insights into a fundamental difference between A-RNA and B-DNA duplexes with important implications for how they respond to damage and post-transcriptional modifications

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    No full text
    SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083

    Comprehensive Fragment Screening of the SARS‐CoV‐2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    SARS‐CoV‐2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti‐virals. Within the international Covid19‐NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR‐detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure‐based drug design against the SCoV2 proteome

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.This work was supported by Goethe University (Corona funds), the DFG-funded CRC: “Molecular Principles of RNA-Based Regulation,” DFG infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611), the state of Hesse (BMRZ), the Fondazione CR Firenze (CERM), and the IWB-EFRE-program 20007375. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 871037. AS is supported by DFG Grant SCHL 2062/2-1 and by the JQYA at Goethe through project number 2019/AS01. Work in the lab of KV was supported by a CoRE grant from the University of New Hampshire. The FLI is a member of the Leibniz Association (WGL) and financially supported by the Federal Government of Germany and the State of Thuringia. Work in the lab of RM was supported by NIH (2R01EY021514) and NSF (DMR-2002837). BN-B was supported by theNSF GRFP.MCwas supported byNIH (R25 GM055246 MBRS IMSD), and MS-P was supported by the HHMI Gilliam Fellowship. Work in the labs of KJ and KT was supported by Latvian Council of Science Grant No. VPP-COVID 2020/1-0014. Work in the UPAT’s lab was supported by the INSPIRED (MIS 5002550) project, which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and cofinanced by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011- 285950–“SEE-DRUG” project (purchase of UPAT’s 700MHz NMR equipment). Work in the CM-G lab was supported by the Helmholtz society. Work in the lab of ABö was supported by the CNRS, the French National Research Agency (ANR, NMRSCoV2- ORF8), the Fondation de la Recherche MĂ©dicale (FRM, NMR-SCoV2-ORF8), and the IR-RMN-THC Fr3050 CNRS. Work in the lab of BM was supported by the Swiss National Science Foundation (Grant number 200020_188711), the GĂŒnthard Stiftung fĂŒr Physikalische Chemie, and the ETH Zurich. Work in the labs of ABö and BM was supported by a common grant from SNF (grant 31CA30_196256). This work was supported by the ETHZurich, the grant ETH40 18 1, and the grant Krebsliga KFS 4903 08 2019. Work in the lab of the IBS Grenoble was supported by the Agence Nationale de Recherche (France) RA-COVID SARS2NUCLEOPROTEIN and European Research Council Advanced Grant DynamicAssemblies. Work in the CA lab was supported by Patto per il Sud della Regione Siciliana–CheMISt grant (CUP G77B17000110001). Part of this work used the platforms of the Grenoble Instruct-ERIC center (ISBG; UMS 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB), supported by FRISBI (ANR-10-INBS-05-02) and GRAL, financed within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE- 0003). Work at the UW-Madison was supported by grant numbers NSF MCB2031269 and NIH/NIAID AI123498. MM is a RamĂłn y Cajal Fellow of the Spanish AEI-Ministry of Science and Innovation (RYC2019-026574-I), and a “La Caixa” Foundation (ID 100010434) Junior Leader Fellow (LCR/BQ/PR19/11700003). Funded by project COV20/00764 fromthe Carlos III Institute of Health and the SpanishMinistry of Science and Innovation to MMand DVL. VDJ was supported by the Boehringer Ingelheim Fonds. Part of this work used the resources of the Italian Center of Instruct-ERIC at the CERM/ CIRMMP infrastructure, supported by the Italian Ministry for University and Research (FOE funding). CF was supported by the Stiftung Polytechnische Gesellschaft. Work in the lab of JH was supported by NSF (RAPID 2030601) and NIH (R01GM123249).Peer reviewe
    corecore