905 research outputs found

    FUV and X-ray irradiated protoplanetary disks: a grid of models I. The disk structure

    Get PDF
    Context. Planets are thought to eventually form from the mostly gaseous (~99% of the mass) disks around young stars. The density structure and chemical composition of protoplanetary disks are affected by the incident radiation field at optical, FUV, and X-ray wavelengths, as well as by the dust properties. Aims. The effect of FUV and X-rays on the disk structure and the gas chemical composition are investigated. This work forms the basis of a second paper, which discusses the impact on diagnostic lines of, e.g., C+, O, H2O, and Ne+ observed with facilities such as Spitzer and Herschel. Methods. A grid of 240 models is computed in which the X-ray and FUV luminosity, minimum grain size, dust size distribution, and surface density distribution are varied in a systematic way. The hydrostatic structure and the thermo-chemical structure are calculated using ProDiMo. Results. The abundance structure of neutral oxygen is stable to changes in the X-ray and FUV luminosity, and the emission lines will thus be useful tracers of the disk mass and temperature. The C+ abundance distribution is sensitive to both X-rays and FUV. The radial column density profile shows two peaks, one at the inner rim and a second one at a radius r=5-10 AU. Ne+ and other heavy elements have a very strong response to X-rays, and the column density in the inner disk increases by two orders of magnitude from the lowest (LX = 1e29 erg/s) to the highest considered X-ray flux (LX = 1e32 erg/s). FUV confines the Ne+ ionized region to areas closer to the star at low X-ray luminosities (LX = 1e29 erg/s). H2O abundances are enhanced by X-rays due to higher temperatures in the inner disk and higher ionization fractions in the outer disk. The line fluxes and profiles are affected by the effects on these species, thus providing diagnostic value in the study of FUV and X-ray irradiated disks around T Tauri stars. (abridged)Comment: 47 pages, accepted by Astronomy and Astrophysics, a high resolution version of the paper is located at http://www.astro.rug.nl/~meijerink/disk_paperI_xrays.pd

    Uncertainties in water chemistry in disks: An application to TW Hya

    Get PDF
    Context. This paper discusses the sensitivity of water lines to chemical processes and radiative transfer for the protoplanetary disk around TW Hya. The study focuses on the Herschel spectral range in the context of new line detections with the PACS instrument from the Gas in Protoplanetary Systems project (GASPS). Aims. The paper presents an overview of the chemistry in the main water reservoirs in the disk around TW Hya. It discusses the limitations in the interpretation of observed water line fluxes. Methods. ... (abbreviated) Results. We report new line detections of p-H2O (3_22-2_11) at 89.99 micron and CO J=18-17 at 144.78 micron for the disk around TW Hya. Disk modeling shows that the far-IR fine structure lines ([OI], [CII]) and molecular submm lines are very robust to uncertainties in the chemistry, while the water line fluxes can change by factors of a few. The water lines are optically thick, sub-thermally excited and can couple to the background continuum radiation field. The low-excitation water lines are also sensitive to uncertainties in the collision rates, e.g. with neutral hydrogen. The gas temperature plays an important role for the [OI] fine structure line fluxes, the water line fluxes originating from the inner disk as well as the high excitation CO, CH+ and OH lines. Conclusions. Due to their sensitivity on chemical input data and radiative transfer, water lines have to be used cautiously for understanding details of the disk structure. Water lines covering a wide range of excitation energies provide access to the various gas phase water reservoirs (inside and outside the snow line) in protoplanetary disks and thus provide important information on where gas-phase water is potentially located. Experimental and/or theoretical collision rates for H2O with atomic hydrogen are needed to diminish uncertainties from water line radiative transfer.Comment: accepted for publication in A&

    [OI] disk emission in the Taurus star forming region

    Get PDF
    The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius, and on the efficiency with which this is converted into thermal energy. The understanding of these heating and cooling processes is crucial to provide a reliable disk structure for the interpretation of dust continuum emission and gas line fluxes. Especially in the upper layers of the disk, where gas and dust are thermally decoupled, the infrared line emission is strictly related to the gas heating/cooling processes. We aim to study the thermal properties of the disk in the oxygen line emission region, and to investigate the relative importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070 Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes observed in a sample of protoplanetary disks of the Taurus/Auriga star forming region and compare it to the model predictions presented in our previous work. The data were obtained with the PACS instrument on board the Herschel Space Observatory as part of the Herschel Open Time Key Program GASPS (GAS in Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid of disk models can reproduce the [OI] absolute fluxes and predict a correlation between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI] line flux and the X-ray luminosity, the FUV luminosity or their sum. The data show that the FUV or X-ray radiation has no notable impact on the region where the [OI] line is formed. This is in contrast with what is predicted from our models. Possible explanations are that the disks in Taurus are less flaring than the hydrostatic models predict, and/or that other disk structure aspects that were left unchanged in our models are important. ..abridged..Comment: 9 pages, accepted for publication in A&

    Excitation of the molecular gas in the nuclear region of M82

    Get PDF
    We present high resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines are detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n=10^3.5 cm^-3) clouds, with column densities of N_H=10^21.5 cm^-2 and a relatively low UV radiation field (GO = 10^2). The remaining gas is predominantly found in clouds with higher densities (n=10^5 cm^-3) and radiation fields (GO = 10^2.75), but somewhat lower column densities (N_H=10^21.2 cm^-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n=10^6 cm^-3) and UV field (GO = 10^3.25). These results show the strength of multi-component modeling for the interpretation of the integrated properties of galaxies.Comment: Accepted for publication in A&A Letter

    Black hole accretion and star formation as drivers of gas excitation and chemistry in Mrk231

    Get PDF
    We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk231. In total 25 lines are detected, including CO J=5-4 through J=13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J=8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J=8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J=8. X-rays from the accreting supermassive black hole in Mrk231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.Comment: 5 pages, 2 figures, accepted for publication in Astronomy & Astrophysics Special Issue on Herschel first result

    Probing stellar accretion with mid-infrared hydrogen lines

    Get PDF
    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional and debris disks) collected from the {\it Spitzer} archive. We focus on the two brighter {H~{\sc i}} lines observed in the {\it Spitzer} spectra, the {H~{\sc i}}(7-6) at 12.37μ\mum and the {H~{\sc i}}(9-7) at 11.32μ\mum. We detect the {H~{\sc i}}(7-6) line in 46 objects, and the {H~{\sc i}}(9-7) in 11. We compare these lines with the other most common gas line detected in {\it Spitzer} spectra, the {[Ne~{\sc iii}]} at 12.81μ\mum. We argue that it is unlikely that the {H~{\sc i}} emission originates from the photoevaporating upper surface layers of the disk, as has been found for the {[Ne~{\sc iii}]} lines toward low-accreting stars. Using the {H~{\sc i}}(9-7)/{H~{\sc i}}(7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 1010^{10}-1011^{11}~cm3^{-3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the {H~{\sc i}} line luminosity. These two results suggest that the observed mid-IR {H~{\sc i}} lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks.We report for the first time the detection of the {H~{\sc i}}(7-6) line in eight young (< 20~Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the {H~{\sc i}}(7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 1010^{-10}M_{\odot}/yr. We discuss some advantages of extending accretion indicators to longer wavelengths

    Rotational Line Emission from Water in Protoplanetary Disks

    Get PDF
    Circumstellar disks provide the material reservoir for the growth of young stars and for planet formation. We combine a high-level radiative transfer program with a thermal-chemical model of a typical T Tauri star disk to investigate the diagnostic potential of the far-infrared lines of water for probing disk structure. We discuss the observability of pure rotational H2O lines with the Herschel Space Observatory, specifically the residual gas where water is mainly frozen out. We find that measuring both the line profile of the ground 110-101 ortho-H2O transition and the ratio of this line to the 312-303 and 221-212 line can provide information on the gas phase water between 5-100 AU, but not on the snow line which is expected to occur at smaller radii.Comment: 5 pages, 4 figures. Accepted by ApJ
    corecore