9 research outputs found

    ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes

    Get PDF
    ATG genes encode proteins that are required for macroautophagy, the Cvt pathway and/or pexophagy. Using the published Atg protein sequences, we have screened protein and DNA databases to identify putative functional homologs (orthologs) in 21 fungal species (yeast and filamentous fungi) of which the genome sequences were available. For comparison with Atg proteins in higher eukaryotes, also an analysis of Arabidopsis thaliana and Homo sapiens databases was included. This analysis demonstrated that Atg proteins required for non-selective macroautophagy are conserved from yeast to man, stressing the importance of this process in cell survival and viability. The A. thaliana and human genomes encode multiple proteins highly similar to specific fungal Atg proteins (paralogs), possibly representing cell type-specific isoforms. The Atg proteins specifically involved in the Cvt pathway and/or pexophagy showed poor conservation, and were generally not present in A. thaliana and man. Furthermore, Atg19, the receptor of Cvt cargo, was only detected in Saccharomyces cerevisiae. Nevertheless, Atg11, a protein that links receptor-bound cargo (peroxisomes, the Cvt complex) to the autophagic machinery was identified in all yeast species and filamentous fungi under study. This suggests that in fungi an organism-specific form of selective autophagy may occur, for which specialized Atg proteins have evolved

    ATG

    No full text

    Peroxisomes Are Required for Efficient Penicillin Biosynthesis in Penicillium chrysogenum▿ †

    Get PDF
    In the fungus Penicillium chrysogenum, penicillin (PEN) production is compartmentalized in the cytosol and in peroxisomes. Here we show that intact peroxisomes that contain the two final enzymes of PEN biosynthesis, acyl coenzyme A (CoA):6-amino penicillanic acid acyltransferase (AT) as well as the side-chain precursor activation enzyme phenylacetyl CoA ligase (PCL), are crucial for efficient PEN synthesis. Moreover, increasing PEN titers are associated with increasing peroxisome numbers. However, not all conditions that result in enhanced peroxisome numbers simultaneously stimulate PEN production. We find that conditions that lead to peroxisome proliferation but simultaneously interfere with the normal physiology of the cell may be detrimental to antibiotic production. We furthermore show that peroxisomes develop in germinating conidiospores from reticule-like structures. During subsequent hyphal growth, peroxisome proliferation occurs at the tip of the growing hyphae, after which the organelles are distributed over newly formed subapical cells. We observed that the organelle proliferation machinery requires the dynamin-like protein Dnm1

    A flux-sensing mechanism could regulate the switch between respiration and fermentation

    No full text
    The yeast Saccharomyces cerevisiae can show different metabolic phenotypes (e.g. fermentation and respiration). Based on data from the literature, we argue that the substrate uptake rate is the core variable in the system that controls the global metabolic phenotype. Consequently the metabolic phenotype that the cell expresses is not dependent on the type of the sugar or its concentration, but only on the rate at which the sugar enters the cell. As this requires the cells to ‘measure’ metabolic flux, we discuss the existing clues toward a flux-sensing mechanism in this organism and also outline several aspects of the involved flux-dependent regulation system. It becomes clear that the sensing and regulation system that divides the taken up carbon flux into the respiratory or fermentative pathways is complex with many molecular components interacting on multiple levels. To obtain a true understanding about how the global metabolic phenotype of S. cerevisiae is controlled by the glucose uptake rate, different tools and approaches from systems biology will be required.

    The Role of Water in Generating the Calc-alkaline Trend: New Volatile Data for Aleutian Magmas and a New Tholeiitic Index

    No full text
    corecore