28 research outputs found

    Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells

    Get PDF
    Mucosal-Associated Invariant T (MAIT) cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb). MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP). To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment.Career Development Award: (#IK2 CX000538); U.S. Department of Veterans Affairs Clinical Sciences Research and Development Program (MJH); U.S.Department of Veterans Affairs Biomedical Laboratory Research and Development Program (DML) Merit Award: (#I01 BX000533); American Lung Association: (RT-350058)

    MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage

    Get PDF
    Mucosal-associated invariant T (MAIT) cells express a semi-invariant T cell receptor (TCR) that detects microbial metabolites presented by the nonpolymorphic major histocompatibility complex (MHC)-like molecule MR1. The highly conserved nature of MR1 in conjunction with biased MAIT TCRα chain usage is widely thought to indicate limited ligand presentation and discrimination within a pattern-like recognition system. Here, we evaluated the TCR repertoire of MAIT cells responsive to three classes of microbes. Substantial diversity and heterogeneity were apparent across the functional MAIT cell repertoire as a whole, especially for TCRβ chain sequences. Moreover, different pathogen-specific responses were characterized by distinct TCR usage, both between and within individuals, suggesting that MAIT cell adaptation was a direct consequence of exposure to various exogenous MR1-restricted epitopes. In line with this interpretation, MAIT cell clones with distinct TCRs responded differentially to a riboflavin metabolite. These results suggest that MAIT cells can discriminate between pathogen-derived ligands in a clonotype-dependent manner, providing a basis for adaptive memory via recruitment of specific repertoires shaped by microbial exposure

    Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire

    Full text link
    Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here we show that human MAIT cells are remarkably oligoclonal in both the blood and liver, display high inter-individual homology and exhibit a restricted length CDR3β domain of the TCRVβ chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Similar to 'conventional' MAIT cells, these lymphocytes react to riboflavin-synthesizing microbes in an MR1-restricted manner and infiltrate solid tissues. Both MAIT cell types release Th0, Th1 and Th2 cytokines, and sCD40L in response to bacterial infection, show cytotoxic capacity against infected cells and promote killing of intracellular bacteria, thus suggesting important protective and immunoregulatory functions of these lymphocytes
    corecore