2,562 research outputs found

    Quasilocal Center-of-Mass for Teleparallel Gravity

    Full text link
    Asymptotically flat gravitating systems have 10 conserved quantities, which lack proper local densities. It has been hoped that the teleparallel equivalent of Einstein's GR (TEGR, aka GR∣∣{}_{||}) could solve this gravitational energy-momentum localization problem. Meanwhile a new idea: quasilocal quantities, has come into favor. The earlier quasilocal investigations focused on energy-momentum. Recently we considered quasilocal angular momentum for the teleparallel theory and found that the popular expression (unlike our ``covariant-symplectic'' one) gives the correct result only in a certain frame. We now report that the center-of-mass moment, which has largely been neglected, gives an even stronger requirement. We found (independent of the frame gauge) that our ``covariant symplectic'' Hamiltonian-boundary-term quasilocal expression succeeds for all the quasilocal quantities, while the usual expression cannot give the desired center-of-mass moment. We also conclude, contrary to hopes, that the teleparallel formulation appears to have no advantage over GR with regard to localization.Comment: 12 pages, to appear in the proceedings of the 10th Marcel Grossman meeting (Rio de Janeiro, 2003

    Novel Magnetic Resonance Imaging strategy targeting Neurotensin Receptors in detection of Prostate Cancer [preprint]

    Get PDF
    Prostate cancer is the second leading cause of all male cancer deaths. One of the factors present in malignant prostate cells and shown to support its metastatic growth is the neuropeptide neurotensin (NT). The primary goal of the present study was to establish the feasibility of using a newly developed paramagnetic receptor ligand for NT and non-invasive ultrahigh-field magnetic resonance (MR) imaging to visualize prostate cancer in rodents. Orthotropic xenografts were initiated in six-week old male BALB/c nu/nu athymic mice (n = 28) by intra-prostatic (ventral lobe) inoculation of human prostate cancer cells (10 ÎźL of PC3 cells (10^6/100 ÎźL)). Palpable tumors developed within 30-60 days. A micro-imager utilized in these studies was an actively shielded 9.4T, 89 mm bore, Oxford superconducting magnet with a 100 gauss/cm gradient system. Prior to contrast injection, T2 weighted anatomy scans were done to localize the tumor with a spin-echo multi-slice sequence with TR: 2000 TE: 40 and NEX: 1 in both coronal and axial planes. The paramagnetic ligand data sets were collected with a spin-echo, T1 weighted pulse sequence (MSME): TR 300 msec; TE 5 msec; NEX 4 in both axial and coronal planes. The data sets were taken initially at 5-min intervals post contrast injection for the first half hour and then at 15 min intervals for the next 1.5-2 hours for a time series analyses. The temporal distribution of MR signal intensity in various regions were determined in the absence and presence of NT. Our results confirm that the novel NT molecule was protected from enzymatic degradation and capable of forming a high-affinity paramagnetic NT ligand with an extended half-life. During the imaging studies, the signal intensity increased by 200% in the region of the tumor. This increase in signal intensity approached maximum binding within 30 minutes and remained visible for 1-hour post-injection of the contrast agent. Taken together, these findings suggest that it is feasible to detect and image prostate cancer using a paramagnetic NT ligand and the emergence of the NT receptor ligand that may be used as a diagnostic marker for prostate cancer in humans

    Microbial and clinical factors are related to recurrence of symptoms after childhood lower respiratory tract infection

    Get PDF
    Childhood lower respiratory tract infections (LRTI) are associated with dysbiosis of the nasopharyngeal microbiota, and persistent dysbiosis following the LRTI may in turn be related to recurrent or chronic respiratory problems. Therefore, we aimed to investigate microbial and clinical predictors of early recurrence of respiratory symptoms as well as recovery of the microbial community following hospital admission for LRTI in children. To this end, we collected clinical data and characterised the nasopharyngeal microbiota of 154 children (4 weeks–5 years old) hospitalised for a LRTI (bronchiolitis, pneumonia, wheezing illness or mixed infection) at admission and 4–8 weeks later. Data were compared to 307 age-, sex- and time-matched healthy controls. During follow-up, 66% of cases experienced recurrence of (mild) respiratory symptoms. In cases with recurrence of symptoms during follow-up, we found distinct nasopharyngeal microbiota at hospital admission, with higher levels of Haemophilus influenzae/haemolyticus, Prevotella oris and other gram-negatives and lower levels of Corynebacterium pseudodiphtheriticum/propinquum and Dolosigranulum pigrum compared with healthy controls. Furthermore, in cases with recurrence of respiratory symptoms, recovery of the microbiota was also diminished. Especially in cases with wheezing illness, we observed a high rate of recurrence of respiratory symptoms, as well as diminished microbiota recovery at follow-up. Together, our results suggest a link between the nasopharyngeal microbiota composition during LRTI and early recurrence of respiratory symptoms, as well as diminished microbiota recovery after 4–8 weeks. Future studies should investigate whether (speed of) ecological recovery following childhood LRTI is associated with long-term respiratory problems

    A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole

    Full text link
    Broad Fe II emission is a prominent feature of the optical and ultraviolet spectra of quasars. We report on a systematical investigation of optical Fe II emission in a large sample of 4037 z < 0.8 quasars selected from the Sloan Digital Sky Survey. We have developed and tested a detailed line-fitting technique, taking into account the complex continuum and narrow and broad emission-line spectrum. Our primary goal is to quantify the velocity broadening and velocity shift of the Fe II spectrum in order to constrain the location of the Fe II-emitting region and its relation to the broad-line region. We find that the majority of quasars show Fe II emission that is redshifted, typically by ~ 400 km/s but up to 2000 km/s, with respect to the systemic velocity of the narrow-line region or of the conventional broad-line region as traced by the Hbeta line. Moreover, the line width of Fe II is significantly narrower than that of the broad component of Hbeta. We show that the magnitude of the Fe II redshift correlates inversely with the Eddington ratio, and that there is a tendency for sources with redshifted Fe II emission to show red asymmetry in the Hbeta line. These characteristics strongly suggest that Fe II originates from a location different from, and most likely exterior to, the region that produces most of Hbeta. The Fe II-emitting zone traces a portion of the broad-line region of intermediate velocities whose dynamics may be dominated by infall.Comment: 20 pages, 14 figures, accepted for publication in Ap

    Hyperbolic Space Cosmologies

    Full text link
    We present a systematic study of accelerating cosmologies obtained from M/string theory compactifications of hyperbolic spaces with time-varying volume. A set of vacuum solutions where the internal space is a product of hyperbolic manifolds is found to give qualitatively the same accelerating four-dimensional FLRW universe behavior as a single hyperbolic space. We also examine the possibility that our universe is a hyperbolic space and provide exact Milne type solutions, as well as intersecting S-brane solutions. When both the usual 4D spacetime and the m-dimensional internal space are hyperbolic, we find eternally accelerating cosmologies for m≥7m\geq 7, with and without form field backgrounds. In particular, the effective potential for a magnetic field background in the large 3 dimensions is positive definite with a local minimum and thus enhances the eternally accelerating expansion.Comment: 33 pages, 2 figures; v2 refs added; v3 minor change in text, JHEP versio

    Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    Full text link
    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature and polarization with arcminute-scale angular resolution. Calibration of the detector angles is a critical step in producing maps of the CMB polarization. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We present our optical modeling and measurements associated with calibrating the detector angles in ACTPol.Comment: 12 pages, 8 figures, conference proceedings submitted to Proceedings of SPIE; added reference in section 2 and merged repeated referenc

    A Chandra Survey of Supermassive Black Holes with Dynamical Mass Measurements

    Full text link
    We present Chandra observations of 12 galaxies that contain supermassive black holes with dynamical mass measurements. Each galaxy was observed for 30 ksec and resulted in a total of 68 point source detections in the target galaxies including supermassive black hole sources, ultraluminous X-ray sources, and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2--10 keV band X-ray luminosities of the SMBH sources range from 10−810^{-8} to 10−610^{-6}, and the power-law slopes are centered at ∼2\sim2 with a slight trend towards steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which six are likely (>90>90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3--10 keV band of 1.0−0.3+0.6×10401.0_{-0.3}^{+0.6} \times 10^{40} erg/s.Comment: Accepted by ApJ. 16 pages, 8 figures, 5 table

    The radio luminosity, black hole mass and Eddington ratio for quasars from the Sloan Digital Sky Survey

    Full text link
    We investigate the \mbh- \sigma_* relation for radio-loud quasars with redshift z<0.83z<0.83 in Data Release 3 of the Sloan Digital Sky Survey (SDSS). The sample consists of 3772 quasars with better model of Hβ\beta and \oiii lines and available radio luminosity, including 306 radio-loud quasars, 3466 radio-quiet quasars with measured radio luminosity or upper-limit of radio luminosity (181 radio-quiet quasars with measured radio luminosity). The virial supermassive black hole mass (\mbh) is calculated from the broad \hb line, the host stellar velocity dispersion (σ∗\sigma_*) is traced by the core \oiii gaseous velocity dispersion, and the radio luminosity and the radio loudness are derived from the FIRST catalog. Our results are follows: (1) For radio-quiet quasars, we confirm that there is no obvious deviation from the \mbh- \sigma_* relation defined in inactive galaxies when \mbh uncertainties and luminosity bias are concerned. (2) We find that radio-loud quasars deviate much from the \mbh- \sigma_* relation respect to that for radio-quiet quasars. This deviation is only partly due to the possible cosmology evolution of the \mbh- \sigma_* relation and the luminosity bias. (3) The radio luminosity is proportional to \mbh^{1.28^{+0.23}_{-0.16}}(\lb/\ledd)^{1.29^{+0.31}_{-0.24}} for radio-quiet quasars and \mbh^{3.10^{+0.60}_{-0.70}}(\lb/\ledd)^{4.18^{+1.40}_{-1.10}} for radio-loud quasars. The weaker correlation of the radio luminosity dependence upon the mass and the Eddington ratio for radio-loud quasars shows that other physical effects would account for their radio luminosities, such as the black hole spin.Comment: 15 pages, 8 figures, 2 tables, accepted for publication in ChJA

    Cellular Communication through Light

    Get PDF
    Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source) as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials) allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more) frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry
    • …
    corecore