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Take home message (256/256 characters):

Composition of nasopharyngeal microbiota during LRTI in children is related to recurring 

respiratory symptoms in the next months, as well as to incomplete microbiota recovery. 

Future research may pinpoint host and microbial predictors of clinical outcomes.   



 

ABSTRACT 

Childhood lower respiratory tract infections (LRTI) are associated with dysbiosis of the 

nasopharyngeal microbiota, and persistent dysbiosis following the LRTI may in turn be 

related to recurrent or chronic respiratory problems.  

Therefore, we aimed to investigate microbial and clinical predictors of early recurrence of 

respiratory symptoms as well as recovery of the microbial community following hospital 

admission for LRTI in children. 

To this end, we collected clinical data and characterized the nasopharyngeal microbiota of 

154 children (4 weeks-5 years old) hospitalized for a LRTI (bronchiolitis, pneumonia, 

wheezing illness, or mixed infection) at admission and 4-8 weeks later. Data were compared 

to 307 age-, gender- and time-matched healthy controls. 

During follow-up, 66% of cases experienced recurrence of (mild) respiratory symptoms. In 

cases with recurrence of symptoms during follow-up, we found distinct nasopharyngeal 

microbiota at hospital admission, with higher levels of Haemophilus influenzae/haemolyticus, 

Prevotella oris and other gram-negatives and lower levels of Corynebacterium 

pseudodiphtheriticum/propinquum and Dolosigranulum pigrum compared to healthy controls. 

Furthermore, in cases with recurrence of respiratory symptoms, recovery of the microbiota 

was also diminished. Especially in cases with wheezing illness we observed a high rate of 

recurrence of respiratory symptoms, as well as diminished microbiota recovery at follow-up.   

Together, our results suggest a link between the nasopharyngeal microbiota composition 

during LRTI and early recurrence of respiratory symptoms, as well as diminished microbiota 

recovery after 4-8 weeks. Future studies should investigate whether (speed of) ecological 

recovery following childhood LRTI is associated with long-term respiratory problems. 

Word count: 244 

  



 

INTRODUCTION  

Lower respiratory tract infections (LRTIs) remain a leading cause of illness in early childhood, 

and are a risk factor for the development of recurrent and even chronic respiratory problems 

[1–3]. For instance, approximately half of infants with bronchiolitis will subsequently 

experience recurrent wheezing episodes [4], which may persist for years and might 

eventually develop into asthma [5]. Also, health-related quality of life may remain 

substantially decreased for months or even years following a LRTI in both children [6] and 

adults [7]. Causes of respiratory problems following a LRTI remain largely unknown, but 

emerging evidence suggests that the upper respiratory tract (URT) microbiota may play a 

role [8, 9].  

As expected, during a LRTI, the microbial communities of the respiratory tract differ strongly 

from those of healthy, matched controls, with increased presence of potential pathogens 

(‘pathobionts’) like Streptococcus pneumoniae and Haemophilus influenzae, and decreased 

presence of presumed beneficial bacteria like Corynebacterium and Dolosigranulum [10–13]. 

However, microbiota ‘recovery’ following a LRTI is not extensively studied. One case-control 

study has shown that the abundance of pathobiont Haemophilus decreased to normal levels 

within a month [11]. Conversely, a longitudinal study demonstrated persistent enrichment 

with Moraxella up to 6 months after a LRTI [14]. Furthermore, in a prospective cohort of 

infants with bronchiolitis, increased nasal levels of Moraxella and Streptococcus in the weeks 

directly following hospitalization were associated with recurrent wheeze at the age of 3 years, 

suggesting that persistent microbial ‘dysbiosis’ may contribute to long-term respiratory 

outcomes following a LRTI [8].  

Using a matched case-control design, we have previously demonstrated significant 

aberrations of the nasopharyngeal microbial community at time of hospital admission for 

childhood LRTI, when compared to asymptomatic age-, gender- and time-matched controls 

[13]. Currently, we extend our analysis to 4-8 weeks follow-up, and demonstrate that early 



 

recurrence of respiratory symptoms is related to the nasopharyngeal microbial community 

composition at times of LRTI as well as to impaired microbiota recovery following LRTI.  

METHODS 

We refer to our previous publication on this cohort [13] for details on study design and 

microbiota analysis, and to the online data supplement for details on statistical analysis. Data 

are available from the NCBI Sequence Read Archive database (BioProject ID 

PRJNA428382). 

Study design 

We enrolled 154 cases aged 4 weeks to 5 years old, hospitalized for a LRTI, and 307 age-, 

time- and gender-matched, healthy controls from the community (1:2 ratio except for 1 case). 

Age, season and gender are known to influence microbiota composition [15–17], and were 

therefore used as matching criteria to avoid confounding. Nasopharyngeal swabs were 

obtained from cases at hospital admission and 4-8 weeks after discharge during a follow-up 

visit to the outpatient clinic or at home. Nasopharyngeal swabs from controls were obtained 

once during a home visit within 2 weeks from case admission (Figure S1). Extensive 

information on medical history, lifestyle and environment was collected from all participants 

using questionnaires. From cases, we also collected clinical data during admission and at 

follow-up. Two expert paediatricians independently grouped cases into 3 major LRTI 

phenotypes (pneumonia, bronchiolitis, and wheezing illness) based on medical records. 

Cases with an unclear or overlapping phenotype were classified as mixed infection. 

Recurrence of respiratory symptoms was defined as a parent-reported new episode of one or 

more respiratory symptoms (including rhinorrhoea, wheezing, earache, sore throat, 

coughing, hoarseness, and ‘other’ respiratory symptoms) between hospital discharge and the 

follow-up visit 4-8 weeks later. The study was approved by the Dutch National Ethics 

Committee (NL42019.094.12). Written informed parental consent was obtained from all 

participants. 



 

Microbiota analysis 

Bacterial DNA was isolated and quantified as previously described [17–19], with the following 

minor modifications: 16S Real Time PCR was conducted using TAMRA probe 16S-P1 (FAM-

ATT AGA TAC CCT GGT AGT CCA-TAMRA) (Life Technologies, Carlsbad, CA) and a PCR 

mixture containing 12.5 µl 2x Taqman universal master mix (Life Technologies, Carlsbad, 

CA), 1 µl of each primer (10 µM), 1 µl of the probe (5 µM), 6.5 µl HPLC graded water 

(Instruchemie, Delfzijl, Netherlands) and 3 µl of template DNA, on the StepOnePlus System 

(Applied Biosystems, Foster City, CA). Almost all samples (>99%) contained sufficient DNA 

for reliable analysis (Figure S1). Following, amplicon libraries of the 16S-rRNA gene (V4 

region) were generated, and sequencing was executed on the Illumina MiSeq platform 

(Illumina Inc., San Diego, CA). Bioinformatic processing was performed as previously 

described [20, 21]. Contaminating sequences were identified using the decontam R-package, 

using their relation to bacterial biomass (frequency method) and their presence/absence in 

samples versus DNA isolation controls and PCR blanks (prevalence method) [22]. In total, 21 

OTUs were identified as contaminants, and were removed prior to downstream analyses 

(Table S1). Each operational taxonomic unit (OTU) was assigned taxonomy and a rank 

number based on its abundance. Double annotations were assigned to OTUs that could be 

annotated to both species. Presence of Streptococcus pneumoniae, Staphylococcus aureus, 

Haemophilus influenzae and Moraxella catarrhalis was confirmed by quantitative PCR. Viral 

presence was detected by qualitative multiplex Real Time PCR (RespiFinder SMARTfast 22, 

Maastricht, Netherlands). 

Statistical analysis 

Data analysis was performed in R version 3.4.3. Case-control comparisons accounted for 

matching. P-values or Benjamini-Hochberg adjusted q-values below 0.050 were considered 

statistically significant. Chi-square and Wilcoxon tests were used to compare host 

characteristics between cases with and without recurrence of respiratory symptoms during 

follow-up. Independent relationships between antibiotic treatment, LRTI phenotype, age, and 



 

recurrence of respiratory symptoms during follow-up were assessed using multivariable 

logistic regression, including pairwise interactions and correcting for follow-up time. 

Conditional logistic regression was used to compare viral presence between cases and 

controls. 

Alpha diversity was assessed by the Chao1 index for microbial richness and the Shannon 

index for diversity (phyloseq [23]), and significance of differences between cases and 

controls was evaluated using linear mixed-effect models. Microbiota recovery was 

considered complete when the overall microbial composition was comparable between cases 

after 4-8 weeks follow-up and matched controls, which was evaluated by permutational 

analysis of variance (PERMANOVA) on the Bray-Curtis dissimilarity matrix (vegan [24]). We 

similarly analysed differences in microbial diversity at time of admission between cases with 

and without subsequent recurrence of respiratory symptoms, adjusting for age, gender and 

month of hospital admission. 

Discriminant OTUs between cases and controls were identified by combining significant 

results from metagenomeSeq analysis [25] and cross-validated VSURF analysis [26], which 

were then filtered at a fold change (FC) of above 1.5 or below 0.5 (i.e. a 50% change).  

Stratified analyses were performed of microbiota recovery in relation to recurrence of 

respiratory symptoms during follow-up, LRTI phenotype, antibiotic treatment, and viral 

presence. In these stratified analyses, differential abundance testing was limited to the top 

100 highest-ranked OTUs, because false positive results in low abundant OTUs are a known 

risk of metagenomeSeq analysis with smaller group sizes [27]. 

 

RESULTS 

Clinical and microbial factors during LRTI were associated with early recurrence of 

respiratory symptoms 



 

Cohort characteristics were detailed previously [13]. Follow-up data were available for 149 

(97%) cases, with a median follow-up time of 39 days [IQR 35-46] (Figure S1). In the 4-8 

weeks following hospital discharge, 98 (66%) cases experienced recurrence of respiratory 

symptoms (from here on called recurrence of symptoms) (Table S2). Of these cases, 57 

(58%) specified at least 2 different respiratory symptoms, and 47 (48%) also reported fever 

(>38°C).  Furthermore, 41 cases (42%) consulted a physician, and 8 cases (8%) received 

antibiotics for these symptoms. Follow-up time was significantly longer in cases with 

recurrence of respiratory symptoms (p=0.015). Cases with and without recurrence of 

symptoms during follow-up were not significantly different in terms of baseline characteristics 

including age, lifestyle and environmental factors, medical history, and clinical findings such 

as LRTI phenotype and antibiotic treatment (Table 1). However, when age, LRTI phenotype 

and antibiotic treatment were included in a multivariable model as predictors of recurrence, 

we found a borderline significant, independent association between a diagnosis of wheezing 

illness and an increased rate of subsequent recurrence of respiratory symptoms (β=1.19 

compared to pneumonia, 95% CI -0.097-2.54, p=0.074). Furthermore, an independent 

positive association was found between antibiotic treatment during admission and 

subsequent recurrence of respiratory symptoms (β=2.47, 95% CI 0.52-4.86, p=0.023), but 

this effect diminished with increasing age (interaction age and antibiotics: β=-0.078, 95% CI -

0.15- -0.013, p=0.028)  (Table S3). Viral presence, number of viruses and detection of 

respiratory syncytial virus (RSV) or Human rhinovirus (HRV) was not significantly different 

between cases with and without recurrence (Table 1). 

In this cohort, significant differences in the microbial community composition between cases 

at admission and controls were previously shown, with especially increased abundance of 

pathobionts Haemophilus influenzae/haemolyticus and S. pneumoniae, and decreased 

abundance of presumed beneficial bacteria like Moraxella catarrhalis/nonliquefaciens, 

Dolosigranulum pigrum and Corynebacterium pseudodiphtheriticum/propinquum [13]. Here, 

a modestly lower Shannon diversity at time of admission was related to a higher rate of 



 

recurrence of symptoms, even after adjusting for age, gender and month of hospital 

admission (p=0.049; Figure 1A). Furthermore, the overall microbial community composition 

at time of admission was significantly different between cases with versus cases without 

subsequent recurrence of symptoms, independent of age, gender and month of hospital 

admission (R2: 0.020, p=0.012) (Figure 1B), though not correlated with the severity of 

recurrence of symptoms (i.e. number of symptoms (1 or >1), presence of fever, or the 

parents’ decision to consult a physician during follow-up (data not shown)). Cases with 

recurrence of symptoms had higher abundances of gram-negatives like H. 

influenzae/haemolyticus, Prevotella oris, Actinomyces and Fusobacterium species and lower 

abundances of health-associated C. pseudodiphtheriticum/propinquum and D. pigrum at time 

of admission compared to controls. On the other hand, cases without recurrence had higher 

abundances of amongst others gram-positives Staphylococcus aureus/epidermidis and S. 

pneumoniae at admission compared to controls (Table 2 and Figure S2).  

 

Nasopharyngeal microbiota and viral profiles after recovery from LRTI 

We also aimed to study remaining differences in microbial community diversity and 

composition between recovered cases and controls. In general, samples obtained 4-8 weeks 

after hospital discharge showed significantly higher microbial richness in (former) cases 

when compared to controls (p=0.042), while Shannon diversity and biomass were 

comparable (Figure S3). Furthermore, despite the observed major differences in the overall 

microbial community composition at time of infection, after 4-8 weeks the microbiota of 

recovered cases had become more similar to controls, and only a small, non-significant 

difference remained (R2: 0.004, p=0.080; Figure 2A-B). On the OTU level, we observed 15 

OTUs that were significantly differentially abundant between recovered cases and controls 

(Table 3 and Figure S4). Of these, Moraxella species and Helcococcus were already 

underrepresented at admission, and remained underrepresented in recovered cases, 



 

whereas various gram-negative species including H. influenzae/haemolyticus, P. oris, and 

Neisseria lactamica remained overrepresented in recovered cases compared to controls.  

Assessment of microbiota recovery in relation to recurrence of respiratory symptoms, 

showed that when compared to matched controls, cases with recurrence of symptoms during 

follow-up had a significantly higher microbial richness at the end of follow-up (p=0.034; 

Figure S5A). This difference in microbial richness was not present between cases without 

recurrence of symptoms and their matched controls. Also, on microbial community 

composition level, the microbiota composition had failed to normalize in cases with 

recurrence of respiratory symptoms during follow-up (R2: 0.008, p=0.028), while in cases 

without recurrence the microbiota were comparable to controls (R2: 0.005, p=0.50). 

Especially the abundances of H. influenzae/haemolyticus, Neisseria, P. oris, and 

Porphyromonas were persistently increased after recovery in cases with recurrence of 

symptoms during follow-up compared to controls, while in cases without recurrence, 

abundance of S. aureus/epidermidis and N. lactamica were increased after recovery 

compared to controls (Figure S5B).  

Viral presence at time of admission and after recovery was available for 70 cases and for 

139 corresponding controls. As described previously [13], 97% of cases tested positive for 

any virus at time of admission versus 85% of controls (p=0.019). At follow-up, 91% of 

(former) cases were virus-positive, which was not significantly different from controls. RSV 

detection was higher in cases at time of admission compared to controls (40% vs. 4%; 

p<0.001), but had normalized after recovery (3%). Interestingly, in recovered cases, HRV 

detection was more common (80%) than at time of admission (57%, p=0.006), though 

comparable to controls (70%; Figure S6). Detection of other respiratory viruses was low and 

not significantly different between cases and controls following recovery. 

Microbiota recovery depends on LRTI phenotype, but not on antibiotic treatment or type of 

virus 



 

Next, we used stratified analyses to investigate whether microbiota recovery was related to 

antibiotic treatment, LRTI phenotype or viral presence at time of admission. In total, 43 (28%) 

cases were treated with antibiotics (33 beta-lactam, 10 macrolide) during admission. 

Interestingly, only cases not treated with antibiotics showed significantly higher microbial 

richness after follow-up compared to controls (p=0.001), while no differences in Shannon 

diversity were observed in either group compared to their respective controls (Figure S7A). 

Microbiota composition at follow-up also showed little difference between both antibiotic-

treated and not antibiotic-treated cases and their respective controls (treated cases versus 

controls R2: 0.007, p=0.47; non-treated cases versus controls R2: 0.005, p=0.17).  

Regarding LRTI phenotype, 57 (37%) cases were classified as bronchiolitis, 37 (24%) as 

pneumonia, 34 (22%) as wheezing illness, and 26 (17%) as mixed infection. Only (former) 

bronchiolitis cases had significantly increased microbial richness after follow-up compared to 

matched controls (p=0.013), though a similar trend was observed for former wheezing illness 

cases (p=0.088; Figure S7B). Furthermore, only (former) wheezing illness cases still showed 

a trend towards a different overall microbial community composition at follow-up compared to 

their respective controls (R2: 0.023, p=0.072; Figure 3). As aforementioned, cases with 

wheezing illness had the highest incidence of recurrence of respiratory symptoms, while 

cases with pneumonia had the lowest incidence (Table 1). On OTU level, we observed that 

cases recovered from wheezing illness had increased levels of Streptococcus anginosus, 

and gram-negatives like P. oris, Porphyromonas and Neisseria, which were all also 

associated with recurrence (Figure 4). By contrast, cases recovered from pneumonia had 

increased levels of Klebsiella, Neisseriaceae, and gram-positives S. aureus/epidermidis and 

Kocuria, possibly related to antibiotic selection (Figure S8). 

Finally, we stratified the analysis based on the most prevalent viruses at time of LRTI, i.e. 

RSV and HRV, which were detected in 72 (47%) and 73 (47%) cases, respectively, to rule 

out virus-mediated effects on microbiota recovery. Cases recovered from a RSV-associated 

LRTI had no significant differences in microbial richness, diversity or the overall microbial 



 

composition compared to their matched controls (R2=0.003, p=0.624). Cases recovered from 

a HRV-associated LRTI also showed no significant differences in overall microbial 

composition compared to controls (R2=0.008, p=0.165), though they had a slightly higher 

microbial richness upon recovery, which tended towards significance (p=0.070; Figure S7C). 

 

 

DISCUSSION 

LRTI is strongly associated with dysbiosis of the nasopharyngeal microbiota [13]. Here, we 

found in children hospitalized for acute LRTI that lower microbial diversity and the overall 

microbial community composition in the nasopharynx were modestly associated with 

subsequent recurrence of even very mild respiratory symptoms within 1-2 months. 

Specifically, we identified gram-negatives like H. influenzae/haemolyticus, P. oris and 

Actinomyces species as potential biomarkers of an increased risk of recurrence of respiratory 

symptoms, and gram-positives like S. aureus/epidermidis and S. pneumoniae as potential 

biomarkers of a reduced risk.  

These findings add to a small but growing body of literature suggesting that host-microbial 

interactions during and following acute (L)RTI may contribute to short- and long-term 

respiratory outcomes.  Previously, Neumann et al. found in noses of infants with their first 

RTI that lower microbial diversity and increased levels of bacterial families Moraxellaceae or 

Streptococcaceae were associated with persistent respiratory symptoms [28]. Also in the 

nasal niche, Mansbach et al. related persistently increased levels of Moraxella and 

Streptococcus in the weeks following hospitalization for bronchiolitis in infancy to persistent 

wheeze at the age of 3 years [8]. In case of RSV infection, increased nasopharyngeal levels 

of gram-negatives including H. influenzae have been associated with a pro-inflammatory 

systemic immune response with enhanced neutrophil recruitment and activation, and 

increased disease severity [29, 30]. Correlates with clinical outcomes during recovery remain 



 

unknown, but a severity-dependent relationship between RSV bronchiolitis and the risk of 

recurrent wheezing and asthma has been described [31]. Moreover, Haemophilus-dominated 

nasopharyngeal microbiota during RSV infection has also been related to increased viral 

load [11]  and delayed clearance [32], which might also contribute to persistent inflammation, 

slower recovery and more respiratory morbidity. Finally, in healthy infants, increased influx 

into the nasopharynx of gram-negatives typically found in the mouth, like Prevotella, 

Neisseria and Fusobacterium, has also been associated with higher susceptibility to RTIs in 

general [20, 33]. Alternatively, gram-positive commensals might dampen inflammatory 

responses. For instance, S. epidermidis was shown to enhance mucosal innate immune 

responses in the nose and to thereby confer resistance to viral infection [34]. Moreover, 

dominance of Corynebacterium and Dolosigranulum in the infant nasopharyngeal microbiota 

has been related to decreased incidence of RTIs [35]. Future studies should therefore 

investigate whether antibiotic treatment targeted at gram-negatives and/or preservation or 

supplementation of gram-positive commensals may prevent recurrence of respiratory 

symptoms after LRTI and improve long-term respiratory outcomes.  

In general, we observed that the nasopharyngeal microbiota had recovered 4-8 weeks after 

hospitalization for LRTI, though subtle differences remained including a persistently lower 

abundance of Moraxella than seen in healthy controls. Remarkably, this is opposite to 

observations by Teo and colleagues [14]. This study had an unmatched design, later timing 

of post-LRTI sampling and a different geographic location, but the discrepancy with our 

findings might also reflect biological differences between their cohort at high risk for atopy 

and our unselected cohort. In line with our findings, Kaul and colleagues recently 

demonstrated that in some adult patients with acute influenza infection, microbial 

communities returned to a healthy state within 22 days from hospital admission [36]. It thus 

appears that the URT microbiota are resilient, but the speed of recovery differs between 

individuals. In addition, we observed that children with early recurrence of respiratory 

symptoms following LRTI also had diminished microbiota recovery, despite a longer follow-



 

up duration and more time for the microbiota to recover. The association between longer 

follow-up duration and recurrence of respiratory symptoms may be directly linked, though 

also explained by the fact that children had to be asymptomatic at the time of sampling, and 

as a consequence the follow-up visit was postponed when symptoms were present at that 

moment. Irrespectively, given the high incidence of symptom recurrence in our cohort, we 

theorize that while the microbiota gradually recover following LRTI, resistance to viral 

infection or bacterial pathobiont acquisition and overgrowth might remain diminished for 

some time, resulting in a (temporarily) elevated risk of new infections upon pathobiont 

exposure. Aberrant airway immune profiles in asymptomatic neonates and during RSV 

infection were previously associated with presence and abundance of gram-negatives 

colonizing the respiratory tract [29, 37, 38], and might mediate this association, but this 

remains to be investigated. An alternative hypothesis is, however, that children may be 

genetically predisposed to both microbiota shifts and development of RTIs. For example, 

genetic variants were previously shown to increase susceptibility to otitis media by modifying 

the middle ear microbiome [39]. This would mean our findings are correlative in nature more 

than causally linked. Future studies should therefore take genetic factors into consideration 

to understand the potential mechanisms underpinning our findings.   

Importantly, we observed early recurrence of respiratory symptoms followed by diminished 

microbiota recovery especially in children with wheezing illness, whereas microbiota changes 

during LRTI were previously shown to be phenotype-independent [13]. Together, our findings 

suggest that especially in children with inflammation-driven illness, the nasopharyngeal 

microbiota may have more limited property to recover to a state comparable to healthy, 

matched controls. This is in line with other observational studies where LRTIs accompanied 

by wheezing symptoms were particularly associated with aberrant respiratory microbiota 

development [14] and with later-life persistent wheeze and development of asthma [2, 3]. We 

speculate that wheezing illness patients, who were older than patients with a different LRTI 

phenotype, may have had a more elaborate medical history with LRTIs and atopic 



 

symptoms, which may have resulted in reduced resilience of the microbiota. Alternatively, 

wheezing illness patients often received treatment with inhaled corticosteroids upon hospital 

discharge, which might also have affected microbiota recovery [40, 41]. Unfortunately, limited 

power hampered us to study the effect of inhaled corticosteroids on the respiratory 

microbiota and its recovery. Antibiotic-treated patients also had an increased risk of 

subsequent recurrence, particularly the younger ones. Dutch physicians tend to reserve 

antibiotic treatment for the more severely ill patients. Therefore, we cannot rule out that this 

correlation between antibiotic treatment and recurrence might be influenced by more severe 

disease and accompanying inflammation. Following, the restorative capacity of the 

nasopharyngeal microbiota appeared in general not related to antibiotic treatment, though we 

had insufficient power to test if younger antibiotic-treated children may be more prone to 

prolonged microbiota disturbance, as has been suggested in previous reports [42, 43]. 

Finally, the type of virus detected at time of admission seemed unrelated to recurrence of 

respiratory symptoms and microbiota recovery in this cohort, despite known relationships 

between LRTIs associated with RSV or HRV and chronic respiratory morbidity [44]. 

Strengths of our study include the strictly matched case-control design that allowed us to 

preclude bias from age, gender and seasonality. Furthermore, inclusion of children up to 5 

years old, hospitalized for all LRTI phenotypes allowed us to perform in-depth analyses. 

However, several limitations need to be acknowledged. We were unable to directly study the 

lung microbiota during recovery, but the high concordance between the microbiota in 

nasopharyngeal and endotracheal samples at time of LRTI in young children implies that the 

nasopharyngeal microbiota provides a valid proxy [13]. Furthermore, follow-up of cases 

entailed only one timepoint, and therefore, we could not distinguish at what pace microbial 

recovery occurred, and whether microbial recovery was still ongoing. Follow-up duration also 

varied and was different between cases with and without recurrence. However, since the 

microbiota of cases with recurrence had even more time to recover, this strengthens the 

likelihood that recurrence of respiratory symptoms following LRTI is associated with 



 

diminished microbiota recovery. Lastly, for our analyses of recurrence we relied on parental 

report of respiratory symptoms since hospital discharge, which may have introduced recall 

bias. 

In conclusion, our results suggest that the composition of the nasopharyngeal microbiota 

during acute LRTI in children may increase susceptibility to new respiratory symptoms in the 

months following, while the microbiota gradually recover. Future prospective studies with 

higher resolution and longer follow-up duration, especially focused on recovery from LRTI in 

high-risk groups of recurrent or chronic respiratory morbidity, are required to confirm and 

nuance our findings, and should strive to combine host and microbial factors into prediction 

models of (long-term) clinical outcomes. The current work may be a stepping stone to 

improved understanding of respiratory outcomes after childhood LRTI and potentially provide 

input for clinical studies on methods to alleviate recurrent respiratory problems.  
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FIGURE LEGENDS 

Figure 1 legend 

Figure 1: Nasopharyngeal microbiota during LRTI was associated with early 

recurrence of respiratory symptoms  

(A) Alpha diversity measures Chao1 index and Shannon diversity index estimated at time of 

admission for cases with compared to without recurrence of respiratory symptoms during 

follow-up. Boxes denote means with 95% confidence intervals. Significance was tested by 

linear models adjusting for age, gender and month of admission, and is indicated by *: 

p<0.05. (B) Nonmetric multidimensional scaling biplot based on Bray-Curtis dissimilarity 

depicts nasopharyngeal microbiota composition at time of admission for cases with 

compared to without recurrence of respiratory symptoms during follow-up, combined with the 

top 10 operational taxonomic units (OTUs) with highest relative abundance in the entire 

cohort. Ellipses represent the standard deviation of all points within a sub-cohort. 

Significance was tested using permutational analysis of variance (PERMANOVA), adjusting 

for age, gender and month of hospital admission.  

 

Figure 2 legend 

Figure 2: Nasopharyngeal microbiota recovery following LRTI 

(A) Nonmetric multidimensional scaling biplot based on Bray-Curtis dissimilarity depicts 

nasopharyngeal microbiota composition for cases at admission, cases at follow-up 

(recovery), and controls, combined with the top 10 operational taxonomic units (OTUs) with 

highest relative abundance in the entire cohort. Time (t) in days between admission and the 

follow-up visit was reported as median [IQR]. Ellipses represent the standard deviation of all 

points within a sub-cohort. Significance was tested using permutational analysis of variance 

(PERMANOVA). (B) Mean relative abundances of the 10 OTUs with highest relative 

abundance.  



 

 

Figure 3 legend 

Figure 3. Microbiota recovery depended on infection phenotype. 

Nonmetric multidimensional scaling plots based on Bray-Curtis dissimilarity depict 

nasopharyngeal microbiota composition for cases at admission, cases at follow-up 

(recovery), and controls, for each of the 4 phenotypes. Ellipses represent the standard 

deviation of all points within a sub-cohort. Significance was tested using permutational 

analysis of variance (PERMANOVA).  

 

Figure 4 legend 

Figure 4. Discriminant OTUs between cases recovered from wheezing illness and 

matched controls. 

Volcano plot of differentially abundant OTUs between cases recovered from wheezing illness 

and controls. Significance was assessed by metagenomeSeq analysis and cross-validated 

VSURF analysis limited to the top 100 most highly ranked OTUs, and combined results were 

filtered at a fold change of at least 1.5 or below 0.5. OTUs marked by an asterisk were 

identified by cross-validated VSURF analysis. Results of data points falling beyond the limits 

of the plot: Helcococcus log2FC -5.93, adjusted p-value (log10) 13.48; Janthinobacterium 

lividum log2FC -3.67, adjusted p-value (log10) 10.01. 

  



 

TABLES 

Table 1. Characteristics of cases with and without recurrence of respiratory symptoms 

during 4-8 weeks follow-up. 

  Recurrence   No recurrence  P-value 

   n  98  51  
Basics    

   Age (months)   12.7 [5.5, 21.6]  16.1 [3.5, 32.1] 0.481 

   Girl  39 (39.8)   21 (41.2)  1.000 

   Season of sampling     0.679 

      Spring  13 (13.3)   7 (13.7)   

      Summer  20 (20.4)   14 (27.5)   

      Autumn  10 (10.2)   3 (5.9)   

      Winter  55 (56.1)   27 (52.9)   

   Born at term  90 (91.8)   47 (92.2)  1.000 

   Mode of delivery     0.190 

      vaginal  76 (77.6)   43 (84.3)   

      elective caesarean section  9 (9.2)   6 (11.8)   

      emergency caesarean section  13 (13.3)   2 (3.9)   

Lifestyle and Environmental Factors    

   Breastfeeding >3 months  38 (38.8)   18 (35.3)  0.812 

   Day care attendance  65 (66.3)   28 (54.9)  0.235 

   Tobacco smoke exposure   19 (19.4)   14 (27.5)  0.359 

   Number of siblings  1.0 [0.2, 2.0]  1.0 [0.0, 2.0] 0.654 
Medical History    

   Previous LRTI*   29 (29.6)   11 (21.6)  0.393 

   Previous hospitalization for RTI†   29 (29.6)   8 (15.7)  0.096 

   Prior wheezing   25 (25.5)   11 (21.6)  0.740 

Clinical Data    

   Main discharge diagnosis     0.408 

      bronchiolitis  37 (37.8)   19 (37.3)   

      indeterminate  18 (18.4)   8 (15.7)   

      pneumonia  18 (18.4)   15 (29.4)   

      wheezing  25 (25.5)   9 (17.6)   

   Antibiotic treatment during admission   25 (25.5)   14 (27.5)  0.953 

   Prednison during admission  16 (16.3)  9 (17.6) 1.000 

   Follow-up time (days after admission)  42.0 [36.0, 49.0]  39.0 [34.5, 44.0] 0.015 

Viral detection at admission    

   Any virus (%)  94 (98.9)  47 (94.0) 0.232 

   Respiratory syncytial virus (%)  42 (44.2)  28 (56.0) 0.240 

   Human rhinovirus (%)  51 (53.7)  21 (42.0) 0.245 

   Number of viruses (median [IQR])  1.0 [1.0, 2.0]  1.0 [1.0, 2.0] 0.299 

Data are n (%) or median [IQR]. Data were acquired from parent questionnaires and medical 

records. Viral presence was detected by multiplex PCR in nasopharyngeal samples obtained 

at admission. P-values were calculated by chi-square tests or Wilcoxon rank-sum tests. 

* lower respiratory tract infection; † respiratory tract infection. 

  



 

Table 2: Biomarker species during acute LRTI for subsequent recurrence of 

respiratory symptoms 

* operational taxonomic unit; † fold change; ‡ metagenomeSeq analysis; § VSURF analysis.  

  

Differentially abundant at 
admission 

OTU* FC† Significant in 

In cases with subsequent 
recurrence of respiratory 
symptoms vs. controls 

Haemophilus 
influenzae/haemolyticus (2) 

5.97 ms‡ + V§ 

Fusobacterium (83) 2.57 ms 

Prevotella oris (45) 2.31 ms 

Actinomyces graevenitzii (68) 1.88 ms + V 

Fusobacterium (74) 1.76 ms 

Actinomyces johnsonii (75) 1.76 ms + V 

Actinomyces odontolyticus (48) 1.66 ms + V 

Dolosigranulum pigrum (5) 0.41 ms 

Corynebacterium 
pseudodiphtheriticum/ propinquum 
(4) 

0.41 ms 

In cases without subsequent 
recurrence of respiratory 
symptoms vs. controls 

Neisseria lactamica (19) 2.97 ms + V 

Staphylococcus aureus/epidermidis 
(7) 

2.38 ms + V 

Streptococcus pneumoniae (3) 2.31 V 

Atopobium (100) 1.99 ms 

Klebsiella (11) 1.75 ms + V 

Halomonas (14) 1.57 ms 

Prevotella melaninogenica (16) 1.54 V 

Prevotella nanceiensis (25) 0.49 ms 

Neisseria (9) 0.43 ms + V 



 

Table 3. Discriminant OTUs for cases during acute LRTI and after 4-8 weeks follow-up 

compared to controls. 

* operational taxonomic unit; † fold change; ‡ metagenomeSeq analysis; § VSURF analysis; 

ll not significantly different. 

 

  

  Cases at admission 
vs. controls 

Cases at recovery 
vs. controls 

Association OTU* FC† Significant in FC Significant 
in 

Admission Lactococcus lactis (67) 2.06 ms‡ + V§ ns ll ns 

Corynebacteriaceae (161) 1.83 ms + V ns ns 

Abiotrophia (111) 1.66 ms + V ns ns 

Corynebacterium (62) 1.64 ms ns ns 

Megasphaera (137) 1.62 ms ns ns 

Fusobacterium (74) 1.61 ms ns ns 

Actinomyces (48) 1.56 ms ns ns 

Fusobacterium (83) 1.53 ms ns ns 

Actinomyces graevenitzii (68) 1.52 ms + V ns ns 

Acinetobacter soli (125) 1.51 ms ns ns 

Actinomyces johnsonii (75) 1.51 ms ns ns 

Dolosigranulum pigrum (5) 0.43 ms ns ns 

Dolosigranulum (122) 0.4 ms + V ns ns 
Admission 
and 
Recovery 

Haemophilus 
influenzae/haemolyticus (2) 

3.85 ms + V 1.69 V 

Neisseria lactamica (19) 2.22 ms + V 1.96 ms + V 

Prevotella oris (45) 2.03 ms 1.72 ms + V 

Moraxella (54) 0.32 ms + V 0.45 ms + V 

Moraxella (58) 0.19 ms + V 0.45 ms + V 

Moraxella lincolnii (6) 0.18 ms + V 0.3 ms + V 

Moraxella (84) 0.17 ms + V 0.34 ms 

Moraxella (163) 0.15 ms + V 0.39 ms + V 

Moraxella (112) 0.08 ms 1.68 ms 

Helcococcus (43) 0.07 ms 0.07 ms + V 
Recovery Neisseriaceae (15) ns ns 2.26 ms + V 

Moraxella (12) ns ns 1.83 ms 

Porphyromonas (39) ns ns 1.62 ms 

Bradyrhizobium (17) ns ns 1.54 ms + V 

Janthinobacterium lividum (23) ns ns 0.09 ms + V 



 

 

  



 

 

  



 

 

  



 

 


