905 research outputs found
Asymmetric diffusion at the interfaces in multilayers
Nanoscale diffusion at the interfaces in multilayers plays a vital role in
controlling their physical properties for a variety of applications. In the
present work depth-dependent interdiffusion in a Si/Fe/Si trilayer has been
studied with sub-nanometer depth resolution, using x ray standing waves. High
depth-selectivity of the present technique allows one to measure diffusion at
the two interfaces of Fe namely, Fe-on-Si and Si-on-Fe, independently, yielding
an intriguing result that Fe diffusivity at the two interfaces is not
symmetric. It is faster at the Fe-on-Si interface. While the values of
activation energy at the two interfaces are comparable, the main difference is
found in the pre-exponent factor suggesting different mechanisms of diffusion
at the two interfaces. This apparently counter-intuitive result has been
understood in terms of an asymmetric structure of the interfaces as revealed by
depth selective conversion electron Mossbauer spectroscopy. A difference in the
surface free energies of Fe and Si can lead to such differences in the
structure of the two interfaces.Comment: 4 pages, 5 figure
Point defects in silicon after zinc diffusion - a deep level transient spectroscopy and spreading-resistance profiling study
We present results from spreading-resistance profiling and deep level transient spectroscopy on Si after Zn diffusion at 1294 K. Concentration profiles of substitutional in dislocation-free and highly dislocated Si are described by a diffusion mechanism involving interstitial-substitutional exchange. Additional annealing at 873 K following quenching from the diffusion temperature is required in the case of dislocation-free Si to electrically activate . The formation of complexes of with unwanted impurities upon quenching is discussed. Additional Ni diffusion experiments as well as total energy calculations suggest that Ni is a likely candidate for the passivation of Zns. From total energy calculations we find that the formation of complexes involving Zn and Ni depends on the position of the Fermi level. This explains differences in results from spreading-resistance profiling and deep level transient spectroscopy on near-intrinsic and p-type Si, respectively
Entropy and Entropy Production in Some Applications
By using entropy and entropy production, we calculate the steady flux of some
phenomena. The method we use is a competition method, , where is system entropy, is entropy production and
is microscopic interaction time. System entropy is calculated from the
equilibrium state by studying the flux fluctuations. The phenomena we study
include ionic conduction, atomic diffusion, thermal conduction and viscosity of
a dilute gas
Ab-initio molecular dynamics simulation of hydrogen diffusion in -iron
First-principles atomistic molecular dynamics simulation in the
micro-canonical and canonical ensembles has been used to study the diffusion of
interstitial hydrogen in -iron. Hydrogen to Iron ratios between
2 \times 2 \times 2$ supercell. We find that
the average optimum absorption site and the barrier for diffusion depend on the
concentration of interestitials. Iron Debye temperature decreases monotonically
for increasing concentration of interstitial hydrogen, proving that iron-iron
interatomic potential is significantly weakened in the presence of a large
number of diffusing hydrogen atoms
Pressure dependence of diffusion in simple glasses and supercooled liquids
Using molecular dynamics simulation, we have calculated the pressure
dependence of the diffusion constant in a binary Lennard-Jones Glass. We
observe four temperature regimes. The apparent activation volume drops from
high values in the hot liquid to a plateau value. Near the critical temperature
of the mode coupling theory it rises steeply, but in the glassy state we find
again small values, similar to the ones in the liquid. The peak of the
activation volume at the critical temperature is in agreement with the
prediction of mode coupling theory
Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals
Cu2-xTe nanocubes were used as starting seeds to access metal telluride
nanocrystals by cation exchanges at room temperature. The coordination number
of the entering cations was found to play an important role in dictating the
reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e.
with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe
or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like
heterostructures as intermediates. The formation of Janus-like architectures
was attributed to the high diffusion rate of the relatively small tetrahedrally
coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and
nucleate the CdTe (or HgTe) phase in a preferred region of the host structure.
Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe
phases rather than the more stable zinc-blende ones, indicating that the anion
framework of the starting Cu2- xTe particles could be more easily deformed to
match the anion framework of the metastable wurtzite structures. As hexagonal
HgTe had never been reported to date, this represents another case of
metastable new phases that can only be accessed by cation exchange. On the
other hand, the exchanges involving octahedrally coordinated ions (i.e. with
coordination number 6), such as Pb2+ or Sn2+, yielded rock-salt polycrystalline
PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell
architectures at the early stages of the exchange process. In this case, the
octahedrally coordinated ions are probably too large to diffuse easily through
the Cu2-xTe structure: their limited diffusion rate restricts their initial
reaction to the surface of the nanocrystals, where cation exchange is initiated
unselectively, leading to core@shell architectures.Comment: 11 pages, 7 figures in J. Am. Chem. Soc, 13 May 201
Lattice diffusion and surface segregation of B during growth of SiGe heterostructures by molecular beam epitaxy: effect of Ge concentration and biaxial stress
Si1-xGex/Si1-yGey/Si(100) heterostructures grown by Molecular Beam Epitaxy
(MBE) were used in order to study B surface segregation during growth and B
lattice diffusion. Ge concentration and stress effects were separated. Analysis
of B segregation during growth shows that: i) for layers in epitaxy on
(100)Si), B segregation decreases with increasing Ge concentration, i.e. with
increased compressive stress, ii) for unstressed layers, B segregation
increases with Ge concentration, iii) at constant Ge concentration, B
segregation increases for layers in tension and decreases for layers in
compression. The contrasting behaviors observed as a function of Ge
concentration in compressively stressed and unstressed layers can be explained
by an increase of the equilibrium segregation driving force induced by Ge
additions and an increase of near-surface diffusion in compressively stressed
layers. Analysis of lattice diffusion shows that: i) in unstressed layers, B
lattice diffusion coefficient decreases with increasing Ge concentration, ii)
at constant Ge concentration, the diffusion coefficient of B decreases with
compressive biaxial stress and increases with tensile biaxial stress, iii) the
volume of activation of B diffusion () is positive for biaxial stress while it
is negative in the case of hydrostatic pressure. This confirms that under a
biaxial stress the activation volume is reduced to the relaxation volume
Chronic Fibrotic Changes in Experimental Pulmonary Embolization in the Rat Model
Comparative Medicine - OneHealth and Comparative Medicine Poster SessionIntroduction: Fat embolism, a subclinical event, occurs in many clinical settings, such as long bones fractures, liposuction and during cardiopulmonary bypass. Some cases, especially with trauma, result in fat embolism syndrome (FES), a serious manifestation of fat embolism. FES is reported to occur in 5-10% of major trauma cases and can produce profound respiratory problems that may culminate in adult respiratory distress syndrome (ARDS). Embolized fat is hydrolyzed by lipase into free fatty acids which have been shown by previous histological studies to be toxic to the lung. An animal model of fat embolism has been developed utilizing triolein given intravenously (i.v.) to rats. We hypothesized that i.v. triolein will produce histological changes in the lung that are similar to the changes seen in human FES.
Methods: Following University animal care approval, unanesthetized Sprague Dawley rats (study n=13, control n=12) were injected with either triolein, 0.2 mL (study) or saline, 0.2 mL (control). Weights were recorded until necropsy at 3 weeks (n=13) and 6 weeks (n=12). Morphometric measurements were made on both H&E and fat-stained tissues from the lungs, heart, kidneys and spleen. All vessels were examined using high magnification fields. Arterial wall thickness (lumen patency) was calculated by vessel luminal and external diameters. The medial-adventitial ratio was calculated from the outer medial diameter divided by the outer adventitial diameter. These values were keyed into statistical software and analysis as a function of time and treatment was calculated using t-tests with significance noted at a p<0.05.
Results: Gross pathological changes were seen in lung, heart, kidneys, liver and spleen of the triolein group. Pulmonary histological examination revealed diffuse intra-alveolar hemorrhages and edema with peri-bronchial inflammation. Vasculitis was more prominent in the peri-bronchial areas as well. Pulmonary arteries revealed significant medial thickening as compared with the control groups with lumen patency p=0.004. Adventitia/media ratio, with large variability in the triolein group, was not statistically significant. Conclusions: Our data showed that injected triolein remains in the rat lung after 3 and 6 weeks with associated vascular and septal damage in the lung tissue compared to controls. Discussion: This study is a continuation of our previous study showing an increase of severe pulmonary damage within 3-6 hours following triolein induced fat embolism in the rat, reaching a peak at 96 hrs post injection. Despite unmedicated recovery of general condition and body weight and reopening of the pulmonary arteries and arterioles, collagen and vasculitis persisted up to 6 weeks. Further studies are needed to verify the eventual recovery or the organ evolution toward chronic fibrosis
Interacting Random Walkers and Non-Equilibrium Fluctuations
We introduce a model of interacting Random Walk, whose hopping amplitude
depends on the number of walkers/particles on the link. The mesoscopic
counterpart of such a microscopic dynamics is a diffusing system whose
diffusivity depends on the particle density. A non-equilibrium stationary flux
can be induced by suitable boundary conditions, and we show indeed that it is
mesoscopically described by a Fourier equation with a density dependent
diffusivity. A simple mean-field description predicts a critical diffusivity if
the hopping amplitude vanishes for a certain walker density. Actually, we
evidence that, even if the density equals this pseudo-critical value, the
system does not present any criticality but only a dynamical slowing down. This
property is confirmed by the fact that, in spite of interaction, the particle
distribution at equilibrium is simply described in terms of a product of
Poissonians. For mesoscopic systems with a stationary flux, a very effect of
interaction among particles consists in the amplification of fluctuations,
which is especially relevant close to the pseudo-critical density. This agrees
with analogous results obtained for Ising models, clarifying that larger
fluctuations are induced by the dynamical slowing down and not by a genuine
criticality. The consistency of this amplification effect with altered coloured
noise in time series is also proved.Comment: 8 pages, 7 figure
- …
