4 research outputs found

    An investigation on quilled nozzle-less electrospinning in comparison with conventional methods for producing PAN nanofibers

    No full text
    Abstract Over the last decades by appearing nanotechnology electrospinning has been reconsidered as a significant method. However, electrospinning production rate is limited by the rate at which the polymer solution or melt is fed to a single jet. Feeding rate can be increased through implementing a wide range of methods such as multiple nozzle electrospinning. In the present work, an innovative “quilled” drum with a peculiar design was rotated in a PAN polymer solution in an electrical field to optimize energy consumption, uniform nanofiber distribution on the collector, and increase production rate. The produced nanofibers were compared with those produced from modified multi-nozzle and single-nozzle electrospinning methods. The mean diameters of nanofibers produced from the quilled drum was 32% greater than that of single-nozzle and 28% less than multi-nozzle electrospinning. The CV% of thickness of the webs were 7.9, 11.2, and 12.5% for the quilled, single nozzle and multi-nozzle methods, respectively which showed the presented method produced more uniform webs. The production rate of this electrospinning was 60 and 17 times more than single and multi-nozzle methods, respectively
    corecore