11 research outputs found

    Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Snorkelers in mangrove forest waters inhabited by the upside-down jellyfish Cassiopea xamachana report discomfort due to a sensation known as stinging water, the cause of which is unknown. Using a combination of histology, microscopy, microfluidics, videography, molecular biology, and mass spectrometry-based proteomics, we describe C. xamachana stinging-cell structures that we term cassiosomes. These structures are released within C. xamachana mucus and are capable of killing prey. Cassiosomes consist of an outer epithelial layer mainly composed of nematocytes surrounding a core filled by endosymbiotic dinoflagellates hosted within amoebocytes and presumptive mesoglea. Furthermore, we report cassiosome structures in four additional jellyfish species in the same taxonomic group as C. xamachana (Class Scyphozoa; Order Rhizostomeae), categorized as either motile (ciliated) or nonmotile types. This inaugural study provides a qualitative assessment of the stinging contents of C. xamachana mucus and implicates mucus containing cassiosomes and free intact nematocytes as the cause of stinging water

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Surgical Pathology Resident Rotation Restructuring at a Tertiary Care Academic Center

    No full text
    Changes in the field of pathology and resident education necessitate ongoing evaluation of residency training. Evolutionary change is particularly important for surgical pathology rotations, which form the core of anatomic pathology training programs. In the past, we organized this rotation based on subjective insight. When faced with the recent need to restructure the rotation, we strove for a more evidence-based process. Our approach involved 2 primary sources of data. We quantified the number of cases and blocks submitted per case type to estimate workload and surveyed residents about the time required to gross specimens in all organ systems. A multidisciplinary committee including faculty, residents, and staff evaluated the results and used the data to model how various changes to the rotation would affect resident workload, turnaround time, and other variables. Finally, we identified rotation structures that equally distributed work and created a point-based system that capped grossing time for residents of different experience. Following implementation, we retrospectively compared turnaround time and duty hour violations before and after these changes and surveyed residents about their experiences with both systems. We evaluated the accuracy of the point-based system by examining grossing times and comparing them to the assigned point values. We found overall improvement in the rotation following the implementation. As there is essentially no literature on the subject of surgical pathology rotation organization, we hope that our experience will provide a road map to improve pathology resident education at other institutions

    Combining New Institutionalisms: Explaining Institutional Change in American Property Insurance

    No full text

    Action to protect the independence and integrity of global health research

    No full text
    corecore