172 research outputs found

    Active x-ray optics for high resolution space telescopes

    Full text link
    © Copyright SPIE. The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution (∼10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin actively controlled grazing incident optics for the next generation of X-ray space telescopes. Currently telescope systems are limited in the resolution and sensitivity by the optical quality of the thin shell optics used. As part of its research programme an actively controlled prototype X-ray thin shell telescope optic of dimensions 30x10cm has been developed to bench test the technology. The design is based on thin nickel shells bonded to shaped piezo-electric unimorph actuators made from lead zirconate titanate (PZT)

    Competitive Performance Effects of Psychological Skill Training for Youth Swimmers

    Get PDF
    This study assessed the effect of two different psychological methods of skills training-self-talk and goal setting-on the swimming performance of youth swimmers. We allocated a convenience sample of club and county level youth swimmers ( N  = 49; M age  = 10.8, SD  = 1.25) to one of the three groups: self-talk, goal setting, or a control group engaged in no systematic psychological method of skills training. The groups were balanced in terms of competitive performance ability, age, and gender. Participants in the experimental conditions (self-talk and goal setting) completed a 5-week psychological skills intervention program and were measured on pre- and post-200-m swimming time in competition. After controlling for level of engagement in the program, analysis of covariance revealed a significant omnibus effect ( p  = .006, η p 2  = .20) with post hoc pairwise comparisons using magnitude-based statistics demonstrating that goal setting had a small positive effect compared with self-talk ( η 2 = .40; ± 0.45). Both self-talk ( η 2 = .50; ±0.48) and goal setting ( η 2 = .71; ±0.4) showed a small and moderate positive effect, respectively, relative to the control group. A social validation check confirmed that the swimmers found the intervention to be relevant, beneficial, and meaningful for improving performance. Psychological skills training may be effective in improving youth swimming performance; specific mechanisms underlying these benefits need further exploration

    Modulation of APOL1-miR193a Axis Prevents Podocyte Dediffrentiation in High Glucose Milieu

    Get PDF
    The loss of podocyte (PD) molecular phenotype is an important feature of diabetic podocytopathy. We hypothesized that high glucose (HG) induces dedifferentiation in differentiated podocytes (DPDs) through alterations in the apolipoprotein (APO) L1-microRNA (miR) 193a axis. HG-induced DPD dedifferentiation manifested in the form of downregulation of Wilms’ tumor 1 (WT1) and upregulation of paired box 2 (PAX2) expression. WT1-silenced DPDs displayed enhanced expression of PAX2. Immunoprecipitation of DPD cellular lysates with anti-WT1 antibody revealed formation of WT1 repressor complexes containing Polycomb group proteins, enhancer of zeste homolog 2, menin, and DNA methyltransferase (DNMT1), whereas silencing of either WT1 or DNMT1 disrupted this complex with enhanced expression of PAX2. HG-induced DPD dedifferentiation was associated with a higher expression of miR193a, whereas inhibition of miR193a prevented DPD dedifferentiation in HG milieu. HG downregulated DPD expression of APOL1. miR193a-overexpressing DPDs displayed downregulation of APOL1 and enhanced expression of dedifferentiating markers; conversely, silencing of miR193a enhanced the expression of APOL1 and preserved DPD phenotype. Moreover, stably APOL1G0-overexpressing DPDs displayed the enhanced expression of WT1 but attenuated expression of miR193a; nonetheless, silencing of APOL1 reversed these effects. Since silencing of APOL1 enhanced miR193a expression as well as dedifferentiation in DPDs, it appears that downregulation of APOL1 contributed to dedifferentiation of DPDs through enhanced miR193a expression in HG milieu. Vitamin D receptor agonist downregulated miR193a, upregulated APOL1 expression, and prevented dedifferentiation of DPDs in HG milieu. These findings suggest that modulation of the APOL1-miR193a axis carries a potential to preserve DPD molecular phenotype in HG milieu.</jats:p

    EAACI position paper on occupational rhinitis

    Get PDF
    The present document is the result of a consensus reached by a panel of experts from European and non-European countries on Occupational Rhinitis (OR), a disease of emerging relevance which has received little attention in comparison to occupational asthma. The document covers the main items of OR including epidemiology, diagnosis, management, socio-economic impact, preventive strategies and medicolegal issues. An operational definition and classification of OR tailored on that of occupational asthma, as well as a diagnostic algorithm based on steps allowing for different levels of diagnostic evidence are proposed. The needs for future research are pointed out. Key messages are issued for each item

    Neural cytoskeleton capabilities for learning and memory

    Get PDF
    This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory

    Unified treatment algorithm for the management of crotaline snakebite in the United States: results of an evidence-informed consensus workshop

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Envenomation by crotaline snakes (rattlesnake, cottonmouth, copperhead) is a complex, potentially lethal condition affecting thousands of people in the United States each year. Treatment of crotaline envenomation is not standardized, and significant variation in practice exists.</p> <p>Methods</p> <p>A geographically diverse panel of experts was convened for the purpose of deriving an evidence-informed unified treatment algorithm. Research staff analyzed the extant medical literature and performed targeted analyses of existing databases to inform specific clinical decisions. A trained external facilitator used modified Delphi and structured consensus methodology to achieve consensus on the final treatment algorithm.</p> <p>Results</p> <p>A unified treatment algorithm was produced and endorsed by all nine expert panel members. This algorithm provides guidance about clinical and laboratory observations, indications for and dosing of antivenom, adjunctive therapies, post-stabilization care, and management of complications from envenomation and therapy.</p> <p>Conclusions</p> <p>Clinical manifestations and ideal treatment of crotaline snakebite differ greatly, and can result in severe complications. Using a modified Delphi method, we provide evidence-informed treatment guidelines in an attempt to reduce variation in care and possibly improve clinical outcomes.</p

    Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment

    Get PDF
    Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses

    The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies

    Get PDF
    TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1 agonists, including thymol, carvacrol, 1’S-1’- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and thymoquinone as well as isothiocyanates and sulfides are discussed
    corecore