128 research outputs found

    Muscle Development and Lineage-Specific Expression of CiMDF, the MyoD-Family Gene of Ciona intestinalis

    Get PDF
    AbstractThe expression pattern of CiMDF, the MyoD-family gene of Ciona intestinalis, was analyzed in unmanipulated and microsurgically derived partial embryos. CiMDF encodes two transcripts during development (coding for distinct proteins), the smaller of which, CiMDFa, was detected in maternal RNA. Zygotic activity of CiMDF initiated in cleaving embryos of 32–64 cells. Both CiMDFa and CiMDFb transcripts were detected at this time; however, CiMDFa accumulated more rapidly before declining in abundance such that, by the early tail-formation stage, CiMDFb was more prevalent. Microsurgical isolations of various lineage blastomeres from the eight-cell stage were used to analyze CiMDF expression in the two embryonic lineages that give rise to larval tail muscle—autonomously specified primary cells and conditionally specified secondary cells. CiMDFa and CiMDFb transcripts were detected in both lineages, suggesting that neither functioned in a lineage-specific manner. The data also demonstrated that CiMDF expression was autonomous in the primary lineage (i.e., cells derived from the B4.1 blastomeres) and correlated with histospecific differentiation of muscle. In the secondary lineage (i.e., cells derived from the A4.1 and b4.2 blastomeres), CiMDF expression was conditional and, as in the primary lineage, correlated with muscle differentiation. These experiments reveal similar patterns of CiMDF activity in the primary and secondary muscle lineages and imply a requirement for the expression of this gene in both lineages during larval tail muscle development

    A Case Study of Process Servers in Clark County, Nevada in the District Attorney Criminal Division

    Full text link
    In 1996 the job classification of Process Server was created in the Clark County District Attorney Criminal Division in Las Vegas, Nevada. It was implemented by DA Stewart L. Bell as a cost-saving measure meant as a reclassification of the position of Investigator. Since the initial job posting, the duties appropriate to the position of Process Server have been and remain in question. No written, measurable job performance standards have been established and no consistent training or supervision provided. A review of the literature suggests wide variance in what may be considered appropriate job duties for this classification, though the majority of Process Servers in the literature serve civil process, not criminal, and work primarily for their own private business enterprises. In an effort to capture employee concerns in regards to training, supervision, and job classification, a survey of the 13 Process Servers currently employed, and 3 prior-employed, by the DA Criminal Division was conducted on March 13, 1999. The results of the survey of these 16 individuals are the basis for this case study

    Proteomic responses to elevated ocean temperature in ovaries of the ascidian \u3cem\u3eCiona intestinalis\u3c/em\u3e

    Get PDF
    Ciona intestinalis, a common sea squirt, exhibits lower reproductive success at the upper extreme of the water temperatures it experiences in coastal New England. In order to understand the changes in protein expression associated with elevated temperatures, and possible response to global temperature change, we reared C. intestinalis from embryos to adults at 18°C (a temperature at which they reproduce normally at our collection site in Rhode Island) and 22°C (the upper end of the local temperature range). We then dissected ovaries from animals at each temperature, extracted protein, and measured proteomic levels using shotgun mass spectrometry (LC-MS/MS). 1532 proteins were detected at a 1% false discovery rate present in both temperature groups by our LC-MS/MS method. 62 of those proteins are considered up- or down-regulated according to our statistical criteria. Principal component analysis shows a clear distinction in protein expression pattern between the control (18°C) group and high temperature (22°C) group. Similar to previous studies, cytoskeletal and chaperone proteins are upregulated in the high temperature group. Unexpectedly, we find evidence that proteolysis is downregulated at the higher temperature. We propose a working model for the high temperature response in C. intestinalis ovaries whereby increased temperature induces upregulation of signal transduction pathways involving PTPN11 and CrkL, and activating coordinated changes in the proteome especially in large lipid transport proteins, cellular stress responses, cytoskeleton, and downregulation of energy metabolism

    Markov Chain-based Promoter Structure Modeling for Tissue-specific Expression Pattern Prediction

    Get PDF
    Transcriptional regulation is the first level of regulation of gene expression and is therefore a major topic in computational biology. Genes with similar expression patterns can be assumed to be co-regulated at the transcriptional level by promoter sequences with a similar structure. Current approaches for modeling shared regulatory features tend to focus mainly on clustering of cis-regulatory sites. Here we introduce a Markov chain-based promoter structure model that uses both shared motifs and shared features from an input set of promoter sequences to predict candidate genes with similar expression. The model uses positional preference, order, and orientation of motifs. The trained model is used to score a genomic set of promoter sequences: high-scoring promoters are assumed to have a structure similar to the input sequences and are thus expected to drive similar expression patterns. We applied our model on two datasets in Caenorhabditis elegans and in Ciona intestinalis. Both computational and experimental verifications indicate that this model is capable of predicting candidate promoters driving similar expression patterns as the input-regulatory sequences. This model can be useful for finding promising candidate genes for wet-lab experiments and for increasing our understanding of transcriptional regulation

    Cross-validated methods for promoter/transcription start site mapping in SL trans-spliced genes, established using the Ciona intestinalis troponin I gene

    Get PDF
    In conventionally-expressed eukaryotic genes, transcription start sites (TSSs) can be identified by mapping the mature mRNA 5′-terminal sequence onto the genome. However, this approach is not applicable to genes that undergo pre-mRNA 5′-leader trans-splicing (SL trans-splicing) because the original 5′-segment of the primary transcript is replaced by the spliced leader sequence during the trans-splicing reaction and is discarded. Thus TSS mapping for trans-spliced genes requires different approaches. We describe two such approaches and show that they generate precisely agreeing results for an SL trans-spliced gene encoding the muscle protein troponin I in the ascidian tunicate chordate Ciona intestinalis. One method is based on experimental deletion of trans-splice acceptor sites and the other is based on high-throughput mRNA 5′-RACE sequence analysis of natural RNA populations in order to detect minor transcripts containing the pre-mRNA’s original 5′-end. Both methods identified a single major troponin I TSS located ∼460 nt upstream of the trans-splice acceptor site. Further experimental analysis identified a functionally important TATA element 31 nt upstream of the start site. The two methods employed have complementary strengths and are broadly applicable to mapping promoters/TSSs for trans-spliced genes in tunicates and in trans-splicing organisms from other phyla

    Dynamic and Polarized Muscle Cell Behaviors Accompany Tail Morphogenesis in the Ascidian Ciona intestinalis

    Get PDF
    BACKGROUND: Axial elongation is a key morphogenetic process that serves to shape developing organisms. Tail extension in the ascidian larva represents a striking example of this process, wherein paraxially positioned muscle cells undergo elongation and differentiation independent of the segmentation process that characterizes the formation of paraxial mesoderm in vertebrates. Investigating the cell behaviors underlying the morphogenesis of muscle in ascidians may therefore reveal the evolutionarily conserved mechanisms operating during this process. METHODOLOGY/PRINCIPLE FINDINGS: A live cell imaging approach utilizing subcellularly-localized fluorescent proteins was employed to investigate muscle cell behaviors during tail extension in the ascidian Ciona intestinalis. Changes in the position and morphology of individual muscle cells were analyzed in vivo in wild type embryos undergoing tail extension and in embryos in which muscle development was perturbed. Muscle cells were observed to undergo elongation in the absence of positional reorganization. Furthermore, high-speed high-resolution live imaging revealed that the onset and progression of tail extension were characterized by the presence of dynamic and polarized actin-based protrusive activity at the plasma membrane of individual muscle cells. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that in the Ciona muscle, tissue elongation resulted from gradual and coordinated changes in cell geometry and not from changes in cell topology. Proper formation of muscle cells was found to be necessary not only for muscle tissue elongation, but also more generally for completion of tail extension. Based upon the characterized dynamic changes in cell morphology and plasma membrane protrusive activity, a three-phase model is proposed to describe the cell behavior operating during muscle morphogenesis in the ascidian embryo

    The evolutionary origin of bilaterian smooth and striated myocytes

    Get PDF
    The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolutio
    corecore