743 research outputs found
Magnetic Field Generation in Core-Sheath Jets via the Kinetic Kelvin-Helmholtz Instability
We have investigated magnetic field generation in velocity shears via the
kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet
core and stationary plasma sheath. Our three-dimensional particle-in-cell
simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15
for both electron-proton and electron-positron plasmas. For electron-proton
plasmas we find generation of strong large-scale DC currents and magnetic
fields which extend over the entire shear-surface and reach thicknesses of a
few tens of electron skin depths. For electron-positron plasmas we find
generation of alternating currents and magnetic fields. Jet and sheath plasmas
are accelerated across the shear surface in the strong magnetic fields
generated by the kKHI. The mixing of jet and sheath plasmas generates
transverse structure similar to that produced by the Weibel instability.Comment: 28 pages, 12 figures, in press, ApJ, September 10, 201
Weibel instability and associated strong fields in a fully 3D simulation of a relativistic shock
Plasma instabilities (e.g., Buneman, Weibel and other two-stream
instabilities) excited in collisionless shocks are responsible for particle
(electron, positron, and ion) acceleration. Using a new 3-D relativistic
particle-in-cell code, we have investigated the particle acceleration and shock
structure associated with an unmagnetized relativistic electron-positron jet
propagating into an unmagnetized electron-positron plasma. The simulation has
been performed using a long simulation system in order to study the nonlinear
stages of the Weibel instability, the particle acceleration mechanism, and the
shock structure. Cold jet electrons are thermalized and slowed while the
ambient electrons are swept up to create a partially developed hydrodynamic
(HD) like shock structure. In the leading shock, electron density increases by
a factor of 3.5 in the simulation frame. Strong electromagnetic fields are
generated in the trailing shock and provide an emission site. We discuss the
possible implication of our simulation results within the AGN and GRB context.Comment: 4 pages, 3 figures, ApJ Letters, in pres
Frequency-domain analysis for pulsating combustion of gaseous fuel
Pulsating combustion is among combustion control methods used to suppress formation of NOx. Past experiments showed that the dependency of NOx content from pulsation rate has a minimum. A measuring unit was set up to study torch behavior in infrared band. To study pulsating combustion of gaseous fuel a thermographic camera was used. Thermographic sequences were recorded using the instrument FLIR 7700M with the resolution of 320×240 pixels at the frame rate of 412 Hz. The experiments resulted in obtaining thermographic sequences radiation intensity fields in the longitudinal section of the torch at different pulsation rates. The obtained raw data was preprocessed to obtain distributions of quantities of pixels corresponding to temperatures in each frame, as well as time-domain series for changes of the torch core longitudinal section area. Frequency-domain analysis was run for each time-domain series using Fast Fourier transform (FFT). The results demonstrate that the first maximum of spectral density coincides with the control action rate. The spectrum also contains pronounced second and third harmonics. For each spectrum of the time-domain series signal-to-noise ratio (SNR) was calculated. Comparison of different SNR shows that maximum impact of pulsation control on torch radiation intensity takes place at the on/off valve opening rate of 4 Hz. This method of torch diagnostics can be helpful for future studies and development of pulsating combustion control systems. © 2017 Author(s)
Radiation from relativistic jets
Nonthermal radiation observed from astrophysical systems containing
relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic
nuclei (AGNs), and Galactic microquasar systems usually have power-law emission
spectra. Recent PIC simulations of relativistic electron-ion
(electron-positron) jets injected into a stationary medium show that particle
acceleration occurs within the downstream jet. In the presence of relativistic
jets, instabilities such as the Buneman instability, other two-streaming
instability, and the Weibel (filamentation) instability create collisionless
shocks, which are responsible for particle (electron, positron, and ion)
acceleration. The simulation results show that the Weibel instability is
responsible for generating and amplifying highly nonuniform, small-scale
magnetic fields. These magnetic fields contribute to the electron's transverse
deflection behind the jet head. The ``jitter'' radiation from deflected
electrons in small-scale magnetic fields has different properties than
synchrotron radiation which is calculated in a uniform magnetic field. This
jitter radiation, a case of diffusive synchrotron radiation, may be important
to understand the complex time evolution and/or spectral structure in gamma-ray
bursts, relativistic jets, and supernova remnants.Comment: 8 pages,3 figures, accepted for the Proceedings of Science of the
Workshop on Blazar Variability across the Electromagnetic Spectrum, April 22
to 25, 200
Application of bent crystals at IHEP 70-GeV accelerator to enhance the efficiency of its usage
Bent crystal was extracting 70-GeV protons with average intensity 4*10^11 (as
measured in external beamline) per spill of 1.6 s duration, in parallel to the
simultaneous work of two internal targets in the accelerator ring. An
additional crystal, placed in the external beamline, was deflecting a small
part of the extracted beam with intensity 10^7 protons toward another physics
experiment. Crystal-extracted beam had a typical size of 4 mm by 4 mm fwhm at
the end of the external beamline. Measurements for the extraction efficiency
and other characteristics at the simultaneous work of four experimental set-ups
are presented. With crystal working in the above-said regime during one month,
no degradation of channeling was observed. The studies of extraction efficiency
have been continued with new crystals.Comment: 6pp. Presented at EPAC 200
Radiation from relativistic jets in turbulent magnetic fields
Using our new 3-D relativistic electromagnetic particle (REMP) code
parallelized with MPI, we have investigated long-term particle acceleration
associated with an relativistic electron-positron jet propagating in an
unmagnetized ambient electron-positron plasma. The simulations have been
performed using a much longer simulation system than our previous simulations
in order to investigate the full nonlinear stage of the Weibel instability and
its particle acceleration mechanism. Cold jet electrons are thermalized and
ambient electrons are accelerated in the resulting shocks. The acceleration of
ambient electrons leads to a maximum ambient electron density three times
larger than the original value. Behind the bow shock in the jet shock strong
electromagnetic fields are generated. These fields may lead to the afterglow
emission. We have calculated the time evolution of the spectrum from two
electrons propagating in a uniform parallel magnetic field to verify the
technique.Comment: 3 pages, 2 figures, submitted for the Proceedings of The Sixth
Huntsville Gamma-Ray Burst Symposium 2008, Huntsville, AL, October 20-23,
200
Magnetic field generation in a jet-sheath plasma via the kinetic Kelvin-Helmholtz instability
We have investigated generation of magnetic fields associated with velocity
shear between an unmagnetized relativistic jet and an unmagnetized sheath
plasma. We have examined the strong magnetic fields generated by kinetic shear
(Kelvin-Helmholtz) instabilities. Compared to the previous studies using
counter-streaming performed by Alves et al. (2012), the structure of KKHI of
our jet-sheath configuration is slightly different even for the global
evolution of the strong transverse magnetic field. In our simulations the major
components of growing modes are the electric field and the magnetic
field . After the component is excited, an induced
electric field becomes significant. However, other field components
remain small. We find that the structure and growth rate of KKHI with mass
ratios and are similar.
In our simulations saturation in the nonlinear stage is not as clear as in
counter-streaming cases. The growth rate for a mildly-relativistic jet case
() is larger than for a relativistic jet case
().Comment: 6 pages, 6 figures, presented at Dynamical processes in space plasmas
II, Isradinamic 2012, in press, ANGEO. arXiv admin note: text overlap with
arXiv:1303.256
Descent Relations and Oscillator Level Truncation Method
We reexamine the oscillator level truncation method in the bosonic String
Field Theory (SFT) by calculation the descent relation =Z_3<V_2|. For
the ghost sector we use the fermionic vertices in the standard oscillator
basis. We propose two new schemes for calculations. In the first one we assume
that the insertion satisfies the overlap equation for the vertices and in the
second one we use the direct calculations. In both schemes we get the correct
structures of the exponent and pre-exponent of the vertex <V_2|, but we find
out different normalization factors Z_3.Comment: 21 pages, 10 figures, Late
- …