21 research outputs found

    β-carbonic anhydrases play a role in salicylic acid perception in Arabidopsis

    Get PDF
    The plant hormone salicylic acid (SA) is required for defense responses. NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) and NON RECOGNITION OF BTH-4 (NRB4) are required for the response to SA in Arabidopsis (Arabidopsis thaliana). Here, we isolated several interactors of NRB4 using yeast two-hybrid assays. Two of these interactors, βCA1 and βCA2, are β-carbonic anhydrase family proteins. Since double mutant βca1 βca2 plants did not show any obvious phenotype, we investigated other βCAs and found that NRB4 also interacts with βCA3 and βCA4. Moreover, several βCAs interacted with NPR1 in yeast, including one that interacted in a SA-dependent manner. This interaction was abolished in loss-of-function alleles of NPR1. Interactions between βCAs and both NRB4 and NPR1 were also detected in planta, with evidence for a triple interaction, NRB4- βCA1-NPR1. The quintuple mutant βca1 βca2 βca3 βca4 βca6 showed partial insensitivity to SA. These findings suggest that one of the functions of carbonic anhydrases is to modulate the perception of SA in plants.Facultad de Ciencias Exacta

    Cross-Resistance to Abiraterone and Enzalutamide in Castration Resistance Prostate Cancer Cellular Models Is Mediated by AR Transcriptional Reactivation

    Get PDF
    Androgen deprivation therapy (ADT) and novel hormonal agents (NHAs) (Abiraterone and Enzalutamide) are the goal standard for metastatic prostate cancer (PCa) treatment. Although ADT is initially effective, a subsequent castration resistance status (CRPC) is commonly developed. The expression of androgen receptor (AR) alternative splicing isoforms (AR-V7 and AR-V9) has been associated to CRPC. However, resistance mechanisms to novel NHAs are not yet well understood. Androgen-dependent PCa cell lines were used to generate resistant models to ADT only or in combination with Abiraterone and/or Enzalutamide (concomitant models). Functional and genetic analyses were performed for each resistance model by real-time cell monitoring assays, flow cytometry and RT-qPCR. In androgen-dependent PCa cells, the administration of Abiraterone and/or Enzalutamide as first-line treatment involved a critical inhibition of AR activity associated with a significant cell growth inhibition. Genetic analyses on ADT-resistant PCa cell lines showed that the CRPC phenotype was accompanied by overexpression of AR full-length and AR target genes, but not necessarily AR-V7 and/or AR-V9 isoforms. These ADT resistant cell lines showed higher proliferation rates, migration and invasion abilities. Importantly, ADT resistance induced cross-resistance to Abiraterone and/or Enzalutamide. Similarly, concomitant models possessed an elevated expression of AR full-length and proliferation rates and acquired cross-resistance to its alternative NHA as second-line treatment.Instituto de Salud Carlos III PI17/00989European Regional Development Fund "A way to build Europe"Ramon y Cajal - Ministry of Economy and Competitiveness RYC-2015-18382Ministry of Education, Culture and Sport FPU14/05461University of Granad

    FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening.

    Get PDF
    In this work, we identified and functionally characterized the strawberry (Fragaria × ananassa) R2R3 MYB transcription factor FaMYB123. As in most genes associated with organoleptic properties of ripe fruit, FaMYB123 expression is ripening-related, receptacle-specific, and antagonistically regulated by ABA and auxin. Knockdown of FaMYB123 expression by RNAi in ripe strawberry fruit receptacles downregulated the expression of enzymes involved in the late steps of anthocyanin/flavonoid biosynthesis. Transgenic fruits showed a parallel decrease in the contents of total anthocyanin and flavonoid, especially malonyl derivatives of pelargonidin and cyanidins. The decrease was concomitant with accumulation of proanthocyanin, propelargonidins, and other condensed tannins associated mainly with green receptacles. Potential coregulation between FaMYB123 and FaMYB10, which may act on different sets of genes for the enzymes involved in anthocyanin production, was explored. FaMYB123 and FabHLH3 were found to interact and to be involved in the transcriptional activation of FaMT1, a gene responsible for the malonylation of anthocyanin components during ripening. Taken together, these results demonstrate that FaMYB123 regulates the late steps of the flavonoid pathway in a specific manner. In this study, a new function for an R2R3 MYB transcription factor, regulating the expression of a gene that encodes a malonyltransferase, has been elucidated.This work was funded by the Spanish Ministerio de Ciencia e Innovacion (AGL2014-55784-C2-2-R and AGL2017-86531-C2-2-R). FJMR is supported by a ‘Margarita Salas’ post-doctoral fellowship (UCOR02MS) from the University of Cordoba (Requalification of the Spanish university system) from the Ministry of Universities financed by the European Union (NexGenerationEU). FJMH is supported by a ‘Juan de la Cierva-Incorporacion’ fellowship (IJC2020- 045526-I), funded by MCIN/AEI/10.13039/501100011033 and the European Union ‘NextGenerationEU’/PRTR. AR-F and SA are on the European Union’s Horizon 2020 Research and Innovation Program, Project PlantaSYST (SGA-CSA No. 739582 under FPA No. 664620). The authors thank Dr. Gema Garc ıa from the Microscopy Unit of UCAIB-IMIBIC for technical help with the microscope. Funding for open access charge: University of Cordoba/CBUA.S

    A plant virus causes symptoms through the deployment of a host-mimicking protein domain to attract the insect vector.

    Get PDF
    During compatible plant-virus interactions, viruses can interfere with the normal developmental program of their hosts, leading to the appearance of phenotypes that we usually identify as ‘’symptoms of infection’’ (leaf curling and yellowing, stunting, dwarfism, necrosis). Despite their relevance, the molecular mechanisms underlying symptom induction and their biological meaning, if any, remain poorly understood. By using tomato yellow leaf curl virus (TYLCV, Geminivirus) as model, we have isolated C4 as the main protein responsible for the induction of TYLCV-associated symptoms in tomato. C4, by mimicking a host protein domain, the Conserved C-termini in LAZY1 protein family (CCL) domain, physically interacts with the RCC1-like domain-containing plant proteins (RLDs). By interacting with the RLDs through the CCL-like domain, C4 displaces one endogenous interactor, LAZY (LZY), interfering with RLD functions in processes such as auxin signaling and endomembrane trafficking, which correlates with the manifestation of symptoms. Surprisingly, we observed that appearance of C4-mediated symptoms in tomato plants plays no major role in viral replication nor movement, but they serve as attractants for the insect vector, the whitefly Bemisia tabaci, which preferentially feeds on tomato plants exhibiting strong symptoms of viral infection. These results suggest that, during plant-virus co-evolution, symptoms may have appeared as a strategy to promote viral transmission by the insect vector, at least in some specific plant-virus-vector pathosystems.Work in RLD’s lab is partially funded by the Excellence Strategy of the German Federal and State Governments, the ERC-COG GemOmics (101044142), the DeutscheForschungsgemeinschaft (DFG, German Research foundation) (project numbers LO 2314/1-1 and SBF 1101/3, C08), and a Royal Society Newton Advance grant (NA140481 – NAF\R2\180857). EA is the recipient of a Marie Skłodowska-Curie Grant from the European Union’s Horizon 2020 Research and Innovation Program (Grant 896910-GeminiDECODER). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    NPR1 paralogs of Arabidopsis and their role in salicylic acid perception.

    No full text
    Salicylic acid (SA) is responsible for certain plant defence responses and NON EXPRESSER OF PATHOGENESIS RELATED 1 (NPR1) is the master regulator of SA perception. In Arabidopsis thaliana there are five paralogs of NPR1. In this work we tested the role of these paralogs in SA perception by generating combinations of mutants and transgenics. NPR2 was the only paralog able to partially complement an npr1 mutant. The null npr2 reduces SA perception in combination with npr1 or other paralogs. NPR2 and NPR1 interacted in all the conditions tested, and NPR2 also interacted with other SA-related proteins as NPR1 does. The remaining paralogs behaved differently in SA perception, depending on the genetic background, and the expression of some of the genes induced by SA in an npr1 background was affected by the presence of the paralogs. NPR2 fits all the requirements of an SA receptor while the remaining paralogs also work as SA receptors with a strong hierarchy. According to the data presented here, the closer the gene is to NPR1, the more relevant its role in SA perception

    βCA1f interacts with NPR1 in the presence of SA.

    No full text
    <p>(A) The interactions between βCA1f and several proteins related to SA perception were tested as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0181820#pone.0181820.g001" target="_blank">Fig 1C</a>. βCA1f interacts with NPR1 in a SA-dependent manner, while it interacts with TGA2 regardless of SA. (B) βCA1f did not interact with any of the six <i>npr1</i> alleles tested. These alleles are point mutations of NPR1 found <i>in planta</i>, and they produce stable protein. (C) βCA1f interacted with two NPR1 point mutations that do not alter NPR1 function [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0181820#pone.0181820.ref056" target="_blank">56</a>]. (D) Mutations that disrupt CA activity affect the interaction between βCA1f and NPR1. Two mutations that produce stable pea CA with no activity [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0181820#pone.0181820.ref058" target="_blank">58</a>] were re-created in βCA1f. (E) The same two mutations in βCA1f also affected the interaction between βCA1f and NRB4.</p
    corecore