117 research outputs found

    The -786T>C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no biological or epidemiological data on the association between <it>NOS3 </it>promoter polymorphisms and prostate cancer. The polymorphisms in the promoter region of <it>NOS3 </it>gene may be responsible for variations in the plasma NO, which may promote cancer progression by providing a selective growth advantage to tumor cells by angiogenic stimulus and by direct DNA damage.</p> <p>Methods</p> <p>This study aimed evaluating the <it>NOS3 </it>promoter polymorphisms by PCR-SSCP and sequencing, associating genotypes and haplotypes with <it>NOS3 </it>expression levels through semi-quantitative RT-PCR, and with <it>PCA</it>3 mRNA detection, a specific tumor biomarker, in the peripheral blood of pre-surgical samples from 177 patients; 83 PCa and 94 BPH.</p> <p>Results</p> <p>Three novel SNPs were identified -764A>G, -714G>T and -649G>A in the <it>NOS3 </it>gene promoter region, which together with the -786T>C generated four haplotypes (N, T, C, A). <it>NOS3 </it>gene expression levels were affected by the -786T>C polymorphism, and there was a 2-fold increase in <it>NOS3 </it>levels favored by the incorporation of each C allele. <it>NOS3 </it>levels higher than 80% of the constitutive gene expression level (<it>B2M</it>) presented a 4-fold increase in PCa occurrence.</p> <p>Conclusion</p> <p>The -786T>C polymorphism was the most important promoter alteration of the <it>NOS3 </it>gene that may affect the PCa progression, but not its occurrence, and the incorporation of the C allele is associated with increased levels of <it>NOS3 </it>transcripts. The <it>NOS3 </it>transcript levels presented a bimodal behavior in tumor development and may be used as a biomarker together with the <it>PCA3 </it>marker for molecular staging of the prostate cancer.</p

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types
    corecore