77 research outputs found

    The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush

    No full text

    Nanomechanical Properties of Proteins and Membranes Depend on Loading Rate and Electrostatic Interactions

    No full text
    Knowing the dynamic mechanical response of tissue, cells, membranes, proteins, nucleic acids, and carbohydrates to external perturbations is important to understand various biological and biotechnological problems. Atomic force microscopy (AFM)-based approaches are the most frequently used nanotechnologies to determine the mechanical properties of biological samples that range in size from microscopic to (sub)nanoscopic. However, the dynamic nature of biomechanical properties has barely been addressed by AFM imaging. In this work, we characterizethe viscoelastic properties of the native light-driven proton pump bacteriorhodopsin of the purple membrane of <i>Halobacterium salinarum</i>. Using force–distance curve (<i>F</i>–<i>D</i>)-based AFM we imaged purple membranes while force probing their mechanical response over a wide range of loading rates (from ∼0.5 to 100 μN/s). Our results show that the mechanical stiffness of protein and membrane increases with the loading rate up to a factor of 10 (from ∼0.3 to 3.2 N/m). In addition, the electrostatic repulsion between AFM tip and sample can alter the mechanical stiffness measured by AFM up to ∼60% (from ∼0.8 to 1.3 N/m).These findings indicate that the mechanical response of membranes and proteins and probably of other biomolecular systems should be determined at different loading rates to fully understand their properties

    Multiparametric imaging of biological systems by force-distance curve–based AFM

    No full text
    A current challenge in the life sciences is to understand how biological systems change their structural, biophysical and chemical properties to adjust functionality. Addressing this issue has been severely hampered by the lack of methods capable of imaging biosystems at high resolution while simultaneously mapping their multiple properties. Recent developments in force-distance (FD) curve–based atomic force microscopy (AFM) now enable researchers to combine (sub)molecular imaging with quantitative mapping of physical, chemical and biological interactions. Here we discuss the principles and applications of advanced FD-based AFM tools for the quantitative multiparametric characterization of complex cellular and biomolecular systems under physiological conditions
    • …
    corecore