223 research outputs found

    MIR141 (microRNA 141)

    Get PDF
    Review on MIR141 (microRNA 141), with data on DNA, on the protein encoded, and where the gene is implicated

    AP-1 Transcription Factor JunD Confers Protection from Accelerated Nephrotoxic Nephritis and Control Podocyte-Specific Vegfa Expression

    Get PDF
    Genetic investigation of crescentic glomerulonephritis (Crgn) susceptibility in the Wistar Kyoto rat, a strain uniquely susceptible to nephrotoxic nephritis (NTN), allowed us to positionally clone the activator protein-1 transcription factor Jund as a susceptibility gene associated with Crgn. To study the influence of Jund deficiency (Jund-/-) on immune-mediated renal disease, susceptibility to accelerated NTN was examined in Jund-/- mice and C57BL/6 wild-type (WT) controls. Jund-/- mice showed exacerbated glomerular crescent formation and macrophage infiltration, 10 days after NTN induction. Serum urea levels were also significantly increased in the Jund-/- mice compared with the WT controls. There was no evidence of immune response differences between Jund-/- and WT animals because the quantitative immunofluorescence for sheep and mouse IgG deposition in glomeruli was similar. Because murine Jund was inactivated by replacement with a bacterial LacZ reporter gene, we then investigated its glomerular expression by IHC and found that the Jund promoter is mainly active in Jund-/- podocytes. Furthermore, cultured glomeruli from Jund-/- mice showed relatively increased expression of vascular endothelial growth factor A (Vegfa), Cxcr4, and Cxcl12, well-known HIF target genes. Accordingly, small-interfering RNA–mediated JUND knockdown in conditionally immortalized human podocyte cell lines led to increased VEGFA and HIF1A expression. Our findings suggest that deficiency of Jund may cause increased oxidative stress in podocytes, leading to altered VEGFA expression and subsequent glomerular injury in Crgn

    AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin

    Get PDF
    AbstractThe Hippo signaling network is a key regulator of cell fate. In the recent years, it was shown that its implication in cancer goes well beyond the sole role of YAP transcriptional activity and its regulation by the canonical MST/LATS kinase cascade. Here we show that the motin family member AMOTL1 is an important effector of Hippo signaling in breast cancer. AMOTL1 connects Hippo signaling to tumor cell aggressiveness. We show that both canonical and noncanonical Hippo signaling modulates AMOTL1 levels. The tumor suppressor Merlin triggers AMOTL1 proteasomal degradation mediated by the NEDD family of ubiquitin ligases through direct interaction. In parallel, YAP stimulates AMOTL1 expression. The loss of Merlin expression and the induction of Yap activity that are frequently observed in breast cancers thus result in elevated AMOTL1 levels. AMOTL1 expression is sufficient to trigger tumor cell migration and stimulates proliferation by activating c-Src. In a large cohort of human breast tumors, we show that AMOTL1 protein levels are upregulated during cancer progression and that, importantly, the expression of AMOTL1 in lymph node metastasis appears predictive of the risk of relapse. Hence we uncover an important mechanism by which Hippo signaling promotes breast cancer progression by modulating the expression of AMOTL1

    The RhoA transcriptional program in pre-T cells

    Get PDF
    The GTPase RhoA is essential for the development of pre-T cells in the thymus. To investigate the mechanisms used by RhoA to control thymocyte development we have used Affymetrix gene profiling to identify RhoA regulated genes in T cell progenitors. The data show that RhoA plays a specific and essential role in pre-T cells because it is required for the expression of transcription factors of the Egr-1 and AP-1 families that have critical functions in thymocyte development. Loss of RhoA function in T cell progenitors causes a developmental block that pheno-copies the consequence of losing pre-TCR expression in Recombinase gene 2 (Rag2) null mice. Transcriptional profiling reveals both common and unique gene targets for RhoA and the pre-TCR indicating that RhoA participates in the pre-TCR induced transcriptional program but also mediates pre-TCR independent gene transcription

    KDM6B drives epigenetic reprogramming associated with lymphoid stromal cell early commitment and immune properties

    Get PDF
    Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation

    KDM6B drives epigenetic reprogramming associated with lymphoid stromal cell early commitment and immune properties

    Get PDF
    Mature lymphoid stromal cells (LSCs) are key organizers of immune responses within secondary lymphoid organs. Similarly, inflammation-driven tertiary lymphoid structures depend on immunofibroblasts producing lymphoid cytokines and chemokines. Recent studies have explored the origin and heterogeneity of LSC/immunofibroblasts, yet the molecular and epigenetic mechanisms involved in their commitment are still unknown. This study explored the transcriptomic and epigenetic reprogramming underlying LSC/immunofibroblast commitment. We identified the induction of lysine demethylase 6B (KDM6B) as the primary epigenetic driver of early immunofibroblast differentiation. In addition, we observed an enrichment for KDM6B gene signature in murine inflammatory fibroblasts and pathogenic stroma of patients with autoimmune diseases. Last, KDM6B was required for the acquisition of LSC/immunofibroblast functional properties, including the up-regulation of CCL2 and the resulting recruitment of monocytes. Overall, our results reveal epigenetic mechanisms that participate in the early commitment and immune properties of immunofibroblasts and support the use of epigenetic modifiers as fibroblast-targeting strategies in chronic inflammation

    MSC-Regulated MicroRNAs Converge on the Transcription Factor FOXP2 and Promote Breast Cancer Metastasis

    Get PDF
    SummaryMesenchymal stem/stromal cells (MSCs) are progenitor cells shown to participate in breast tumor stroma formation and to promote metastasis. Despite expanding knowledge of their contributions to breast malignancy, the underlying molecular responses of breast cancer cells (BCCs) to MSC influences remain incompletely understood. Here, we show that MSCs cause aberrant expression of microRNAs, which, led by microRNA-199a, provide BCCs with enhanced cancer stem cell (CSC) properties. We demonstrate that such MSC-deregulated microRNAs constitute a network that converges on and represses the expression of FOXP2, a forkhead transcription factor tightly associated with speech and language development. FOXP2 knockdown in BCCs was sufficient in promoting CSC propagation, tumor initiation, and metastasis. Importantly, elevated microRNA-199a and depressed FOXP2 expression levels are prominent features of malignant clinical breast cancer and are associated significantly with poor survival. Our results identify molecular determinants of cancer progression of potential utility in the prognosis and therapy of breast cancer

    Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells

    Get PDF
    NRF2 (NFE2L2) is one of the main regulators of the antioxidant response of the cell. Here we show that in cancer cells NRF2 targets are selectively upregulated or repressed through a mutant p53-dependent mechanism. Mechanistically, mutant p53 interacts with NRF2, increases its nuclear presence and resides with NRF2 on selected ARE containing gene promoters activating the transcription of a specific set of genes while leading to the transcriptional repression of others. We show that thioredoxin (TXN) is a mutant p53-activated NRF2 target with pro-survival and pro-migratory functions in breast cancer cells under oxidative stress, while heme oxygenase 1 (HMOX1) is a mutant p53-repressed target displaying opposite effects. A gene signature of NRF2 targets activated by mutant p53 shows a significant association with bad overall prognosis and with mutant p53 status in breast cancer patients. Concomitant inhibition of thioredoxin system with Auranofin and of mutant p53 with APR-246 synergizes in killing cancer cells expressing p53 gain-of-function mutants

    Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma

    Full text link
    BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment
    corecore