161 research outputs found

    Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae

    Get PDF
    Telomeres of the Mamestra brassica holocentric chromosomes were studied by Southern blotting, in-situ hybridization and Bal31 assay evidencing the presence of the telomeric (TTAGG)(n) repeat. Successively, molecular analysis of telomeres showed that TRAS1 transposable elements were present at the subtelomeric regions of autosomes but not in the NOR-bearing telomeres of the Z and W sex chromosomes. TRAS1 appeared to be transcriptionally active and non-methylated, as evaluated by RT-PCR and digestion with MspI and HpaII. Finally, dot-blotting experiments showed that the 2.8 +/- 0.5% of the M. brassicae genome consists of TRAS1

    Effectiveness of neonatal pulse oximetry screening for detection of critical congenital heart disease in daily clinical routine—results from a prospective multicenter study

    Get PDF
    Pulse oximetry screening (POS) has been proposed as an effective, noninvasive, inexpensive tool allowing earlier diagnosis of critical congenital heart disease (cCHD). Our aim was to test the hypothesis that POS can reduce the diagnostic gap in cCHD in daily clinical routine in the setting of tertiary, secondary and primary care centres. We conducted a prospective multicenter trial in Saxony, Germany. POS was performed in healthy term and post-term newborns at the age of 24–72 h. If an oxygen saturation (SpO2) of ≤95% was measured on lower extremities and confirmed after 1 h, complete clinical examination and echocardiography were performed. POS was defined as false-negative when a diagnosis of cCHD was made after POS in the participating hospitals/at our centre. From July 2006–June 2008, 42,240 newborns from 34 institutions have been included. Seventy-two children were excluded due to prenatal diagnosis (n = 54) or clinical signs of cCHD (n = 18) before POS. Seven hundred ninety-five newborns did not receive POS, mainly due to early discharge after birth (n = 727; 91%). In 41,445 newborns, POS was performed. POS was true positive in 14, false positive in 40, true negative in 41,384 and false negative in four children (three had been excluded for violation of study protocol). Sensitivity, specificity, positive and negative predictive value were 77.78%, 99.90%, 25.93% and 99.99%, respectively. With POS as an adjunct to prenatal diagnosis, physical examination and clinical observation, the percentage of newborns with late diagnosis of cCHD was 4.4%. POS can substantially reduce the postnatal diagnostic gap in cCHD, and false-positive results leading to unnecessary examinations of healthy newborns are rare. POS should be implemented in routine postnatal care

    Impact of Palivizumab on RSV Hospitalizations for Children with Hemodynamically Significant Congenital Heart Disease

    Get PDF
    The objective of this study was to evaluate the impact of palivizumab prophylaxis on respiratory syncytial virus (RSV) hospitalizations among children with hemodynamically significant congenital heart disease (CHD). In 2003, the American Academy of Pediatrics (AAP) revised the bronchiolitis policy statement and recommended the use of palivizumab in children <24 months old with hemodynamically significant CHD (HS-CHD). California statewide hospital discharge data from years 2000–2002 (pre-AAP policy revision) were compared to those from years 2004–2006 (post-AAP policy revision). Hospitalizations due to RSV bronchiolitis for children <2 years of age were identified by IDC-9 CM codes 4661.1, 480.1, and 079.6 as the Principal Diagnosis. Children with CHD and children with HS-CHD were identified by the codiagnoses. The overall RSV hospitalization rate was 71 per 10,000 children <2 years of age. Of all RSV hospitalizations, 3.0% were among children with CHD, and 0.50% among children with HS-CHD. HS-CHD patients accounted for 0.56% of RSV hospitalizations in 2000–2002, compared to 0.46% RSV hospitalizations in 2004–2006. That represents a 19% reduction in RSV hospitalizations among HS-CHD patients after 2003. The 19% decrease in RSV hospitalizations equates to seven fewer hospitalizations (76 hospital days) per year among HS-CHD patients. We conclude that, since the recommendation of palivizumab for children with HS-CHD in 2003, the impact on RSV hospitalizations in California among HS-CHD patients has been limited. Considering the high cost of palivizumab administration, the cost-benefit of RSV prophylaxis with palivizumab warrants further investigation

    β-Lactam Resistance Response Triggered by Inactivation of a Nonessential Penicillin-Binding Protein

    Get PDF
    It has long been recognized that the modification of penicillin-binding proteins (PBPs) to reduce their affinity for β-lactams is an important mechanism (target modification) by which Gram-positive cocci acquire antibiotic resistance. Among Gram-negative rods (GNR), however, this mechanism has been considered unusual, and restricted to clinically irrelevant laboratory mutants for most species. Using as a model Pseudomonas aeruginosa, high up on the list of pathogens causing life-threatening infections in hospitalized patients worldwide, we show that PBPs may also play a major role in β-lactam resistance in GNR, but through a totally distinct mechanism. Through a detailed genetic investigation, including whole-genome analysis approaches, we demonstrate that high-level (clinical) β-lactam resistance in vitro, in vivo, and in the clinical setting is driven by the inactivation of the dacB-encoded nonessential PBP4, which behaves as a trap target for β-lactams. The inactivation of this PBP is shown to determine a highly efficient and complex β-lactam resistance response, triggering overproduction of the chromosomal β-lactamase AmpC and the specific activation of the CreBC (BlrAB) two-component regulator, which in turn plays a major role in resistance. These findings are a major step forward in our understanding of β-lactam resistance biology, and, more importantly, they open up new perspectives on potential antibiotic targets for the treatment of infectious diseases

    Specialized Peptidoglycan Hydrolases Sculpt the Intra-bacterial Niche of Predatory Bdellovibrio and Increase Population Fitness

    Get PDF
    Bdellovibrio are predatory bacteria that have evolved to invade virtually all Gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound β-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that “regular” PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication
    corecore