4 research outputs found

    Concordance between histology, immunohistochemistry, and Rt-Pcr in the diagnosis of feline infectious peritonitis

    No full text
    Histology, immunohistochemistry (IHC), and reverse transcription polymerase chain reaction (RT-PCR) have been used to diagnose feline infectious peritonitis (FIP), but no information regarding the comparison of their diagnostic performances on the same organ is available. The aims of this study were to determine the concordance among these tests and to evaluate which combination of tests and organs can be used in vivo. Histology, IHC, and nested RT-PCR (RT-nPCR) for feline coronavirus (FCoV) were performed on spleen, liver, mesenteric lymph node, kidney, large and small intestine, and lung from 14 FIP and 12 non-FIP cats. Sensitivity, specificity, predictive values, likelihood ratios, and concordance were calculated. IHC and RT-nPCR had the highest concordance in lung and liver, histology and IHC in the other organs. The sensitivity of histology, IHC, and RT-nPCR on the different organs ranged from 41.7 to 76.9%, 46.2 to 76.9%, and 64.3 to 85.7%, respectively, and their specificity ranged from 83.3 to 100.0%, 100% and 83.3 to 100.0%. Therefore, IHC is recommended when histology is consistent with FIP. If RT-nPCR is performed as the first diagnostic approach, results should always be confirmed with IHC. Lung or liver provide accurate information regardless of the method, while IHC is preferred to RT-nPCR to confirm FIP in the kidney or intestine

    Preliminary investigation on feline coronavirus presence in the reproductive tract of the tom cat as a potential route of viral transmission

    Get PDF
    Objectives: Feline infectious peritonitis (FIP) is an immune-mediated disease initiated by feline coronavirus (FCoV) infection. To date, the only proven route of transmission is the faecal\u2013oral route, but a possible localisation of FCoV in the reproductive tract of tom cats is of concern, owing to the involvement of the male reproductive tract during FIP and to the presence of reproduction disorders in FCoV-endemic feline catteries. The aim of the study was to investigate the presence and localisation of FCoV in semen and/or in the reproductive tract of tom cats, and its possible association with seroconversion and viraemic phase. Methods: Blood, serum, semen and/or testicle samples were obtained from 46 tom cats. Serology was performed on 38 serum samples, nested reverse transcriptase PCR (nRT-PCR) and reverse transcriptase quantitative PCR (RT-qPCR) were performed on 39 blood samples and on 17 semen samples, and histology, immunohistochemistry and nRT-PCR were performed on 39 testicles. Results: Twenty-four of 38 serum samples were positive on serology. Semen samples were negative on RT-PCR and RT-qPCR for FCoV, while all blood samples were negative at both molecular methods, except for one sample positive at RT-qPCR with a very low viral load. All testicles were negative at immunohistochemistry, while six were positive at nRT-PCR for FCoV. Serology and blood PCR results suggest that the virus was present in the environment, stimulating transient seroconversion. FCoV seems not to localise in the semen of tom cats, making the venereal route as a way of transmission unlikely. Although viral RNA was found in some testicles, it could not be correlated with the viraemic phase. Conclusions and relevance: In the light of these preliminary results, artificial insemination appears safer than natural mating as it eliminates the direct contact between animals, thus diminishing the probability of faecal\u2013oral FCoV transmission

    The novel Mechanical Ventilator Milano for the COVID-19 pandemic

    Get PDF
    This paper presents the Mechanical Ventilator Milano (MVM), a novel intensive therapy mechanical ventilator designed for rapid, large-scale, low-cost production for the COVID-19 pandemic. Free of moving mechanical parts and requiring only a source of compressed oxygen and medical air to operate, the MVM is designed to support the long-term invasive ventilation often required for COVID-19 patients and operates in pressure-regulated ventilation modes, which minimize the risk of furthering lung trauma. The MVM was extensively tested against ISO standards in the laboratory using a breathing simulator, with good agreement between input and measured breathing parameters and performing correctly in response to fault conditions and stability tests. The MVM has obtained Emergency Use Authorization by U.S. Food and Drug Administration (FDA) for use in healthcare settings during the COVID-19 pandemic and Health Canada Medical Device Authorization for Importation or Sale, under Interim Order for Use in Relation to COVID-19. Following these certifications, mass production is ongoing and distribution is under way in several countries. The MVM was designed, tested, prepared for certification, and mass produced in the space of a few months by a unique collaboration of respiratory healthcare professionals and experimental physicists, working with industrial partners, and is an excellent ventilator candidate for this pandemic anywhere in the world

    The novel Mechanical Ventilator Milano for the COVID-19 pandemic

    Get PDF
    This paper presents the Mechanical Ventilator Milano (MVM), a novel intensive therapy mechanical ventilator designed for rapid, large-scale, low-cost production for the COVID-19 pandemic. Free of moving mechanical parts and requiring only a source of compressed oxygen and medical air to operate, the MVM is designed to support the long-term invasive ventilation often required for COVID-19 patients and operates in pressure-regulated ventilation modes, which minimize the risk of furthering lung trauma. The MVM was extensively tested against ISO standards in the laboratory using a breathing simulator, with good agreement between input and measured breathing parameters and performing correctly in response to fault conditions and stability tests. The MVM has obtained Emergency Use Authorization by U.S. Food and Drug Administration (FDA) for use in healthcare settings during the COVID-19 pandemic and Health Canada Medical Device Authorization for Importation or Sale, under Interim Order for Use in Relation to COVID-19. Following these certifications, mass production is ongoing and distribution is under way in several countries. The MVM was designed, tested, prepared for certification, and mass produced in the space of a few months by a unique collaboration of respiratory healthcare professionals and experimental physicists, working with industrial partners, and is an excellent ventilator candidate for this pandemic anywhere in the world
    corecore