1	Preliminary investigation on feline coronavirus presence in the reproductive tract
2	of the tomcat as a potential route of viral transmission
3	Stranieri A ^{1,2} , Probo M ^{1,2} , Pisu MC ³ , Fioletti A ¹ , Meazzi S ^{1,2} , Gelain ME ⁴ ,
4	Bonsembiante F ⁴ , Lauzi S ^{1,2} , Paltrinieri S ^{1,2}
5	¹ Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133,
6	Milan, Italy
7	² Central Laboratory, Veterinary Teaching Hospital, University of Milan, Via
8	dell'Università 6, 26900, Lodi, Italy
9	³ Veterinary Reference Centre, Corso Francia 19, Turin, Italy
10	⁴ Department of Comparative Biomedicine and Food Science, University of Padova,
11	Viale dell'Università 16, 35020 Legnaro, Padova, Italy
12	Corresponding author: Angelica Stranieri ^{1,2} , DVM, PhD
13	¹ Department of Veterinary Medicine, University of Milan, Via Celoria 10, 20133,
14	Milan, Italy
15	² Central Laboratory, Veterinary Teaching Hospital, University of Milan, Via
16	dell'Università 6, 26900, Lodi, Italy
17	Email: angelica.stranieri@unimi.it; Telephone number: +390250331174
18	
19	Keywords: feline coronavirus; feline infectious peritonitis; tomcat reproduction; cattery
20	management; PCR; prevention

21 Abstract

Objectives Feline infectious peritonitis (FIP) is an immune-mediated disease initiated by 22 23 feline coronavirus (FCoV) infection. To date, the only proven route of transmission is the fecal-oral route, but a possible localization of FCoV in the reproductive tract of 24 tomcats is of concern, due to the involvement of the male reproductive tract during FIP 25 26 and to the presence of reproduction disorders in FCoV-endemic feline catteries. The aim 27 of the study was to investigate the presence and localization of FCoV in semen and/or in the reproductive tract of tomcats, and its possible association with seroconversion and 28 29 viremic phase. Methods Blood, serum, semen samples and/or testicles were obtained from 46 tomcats. Serology was performed on 38 serum samples, nRT-PCR and RT-30 qPCR were performed on 39 blood samples and on 17 semen samples, and histology, 31 immunohistochemistry and nRT-PCR were performed on 39 testicles. Results Twenty-32 four out of 38 serum samples were positive on serology. Semen samples were negative 33 34 at RT-PCR and RT-qPCR for FCoV, while all blood sample were negative at both 35 molecular methods, except for one sample positive at RT-qPCR with a very low viral load. All testicles were negative at immunohistochemistry, while 6 were positive at 36 37 nRT-PCR for FCoV. Serology and blood PCR results suggest that the virus was present 38 in the environment, stimulating transient seroconversion. FCoV seems not to localize in the semen of tomcats, making the venereal route as a way of transmission unlikely. 39 40 Although viral RNA was found in some testicles, it could not be correlated with the

41	viremic phase. Conclusions and relevance At the light of these preliminary results,
42	artificial insemination appears safer than natural mating since it eliminates the direct
43	contact between animals, thus diminishing the probabilities of fecal-oral FCoV
44	transmission.
45	
46	
47	
48	
49	
50	
51	
52	
54	
54	
56	
50	

58 Introduction

Feline infectious peritonitis (FIP) is an immune-mediated disease of young cats. The 59 causative agent is the feline coronavirus (FCoV), generated by a mutation of the 60 widespread enteric pathotype, that gains the ability to replicate in macrophages, and 61 spreads through infected monocytes.¹ The course of the infection depends in part upon 62 the type and strength of the immune response of the host,²⁻⁴ but environmental factors 63 such as the level of stress and overcrowding also play a role.⁵ FCoV infection is very 64 common in cats; around 40% of the domestic cat population has been infected with 65 FCoV, and this figure may increase up to 90% in multi-cat households.^{6,7} Natural FCoV 66 infections are transient in \sim 70% of cats, but persistent infections can occur in \sim 13% of 67 cats,⁸ while around 5–10% of cats are believed to be resistant to FCoV infection. In 68 most cases, FCoV infection is asymptomatic, or results in only mild gastrointestinal 69 clinical signs; however, in a small percentage of cases, FCoV infection results in FIP.⁵ 70 Asymptomatic FCoV infection was previously believed to be confined to the intestinal 71 tract, but it is now known that healthy FCoV-infected cats can have systemic infection, 72 albeit with lower viral loads than cats with FIP.⁹ These recurrent phases of intestinal 73 colonization and fecal shedding of the virus may lead to a transient localization in 74 several organs and are followed by seroconversion and by negativization at the 75 intestinal level.^{10,11} During the viremic phase, it is possible that the virus localizes also 76

in the reproductive tract, and that it is shed with semen, contributing to the spread of the
FCoV by coupling or by artificial insemination (AI) in breeding cats.

AI has nowadays become reasonably successful in the domestic cat, sufficiently so to 79 contribute to genetic management of catteries.¹² Therefore, there is concern about the 80 possibility of sexual transmission of viruses also through AI. It has been demonstrated 81 that feline immunodeficiency virus (FIV) is shed with semen, and that it can be 82 transmitted horizontally by AI with fresh semen.¹³ Feline leukemia virus (FeLV) 83 infection alters hormone production in the hypothalamic-pituitary-gonadal system, 84 decreasing testosterone, luteinising hormone (LH) and follicle stimulating hormone 85 (FSH) levels, but its exact localization in the reproductive system is still unknown.¹⁴ 86 The involvement of the male reproductive tract during FCoV infection has previously 87 been described as scrotal swelling following abdominal effusion, orchitis, or 88 priapism.¹⁵⁻¹⁸ In all these cases, cats with FCoV in the male reproductive tract were 89 affected by FIP. Nevertheless, the hypothesis of a possible association between FCoV 90 infection and reproductive disorders is supported also by the presence of hypofertility, 91 abortions and/or natimortality in FCoV-endemic catteries.¹ To the best of our 92 knowledge, the localization of the FCoV in the reproductive tract of healthy cats or its 93 presence in tomcat semen has never been demonstrated, but it could represent an 94 95 important step in the process of understanding the mechanisms of FCoV transmission, as to date the only proven route of transmission is the fecal-oral route.⁴ Therefore, the 96

aim of the study was to investigate the presence and localization of FCoV in semen
and/or in the reproductive tract of healthy tomcats, and its possible association with
seroconversion or with the viremic phase.

100

101 Material and methods

102 *Sample collection*

103 Blood, serum, semen and/or testicles were obtained from 46 cats aging from 6 months

to 4 years. Seven cats were tomcats from breeding catteries whose semen samples were

105 collected for AI purposes. All the remaining cats were client-owned, except two stray

106 cats. One of these latter underwent orchiectomy after being placed in a shelter, the other

107 was found severely injured and euthanized.

108 Blood samples were available if routine hematology and/or biochemistry were

109 performed prior to semen collection and/or surgery. After routine diagnostic procedures

110 performed at the site of collection, blood or serum samples, when available, were

111 immediately frozen and periodically sent to the Laboratory of the Veterinary Teaching

112 Hospital of the University of Milan in cold chain. Semen samples were collected as

described below, either for AI purposes or before orchiectomy, with the owner's

- 114 informed consent.
- 115 Testicle samples were obtained after orchiectomy from all the cats except two, whose
- testicles were collected during necropsy performed for diagnostic purposes.

117	Immediately after collection, half testicle was frozen in plain tubes while the other half
118	was collected into 10% neutral-buffered formalin for histological and
119	immunohistochemical examination. For the two cats on which necropsy was performed,
120	tissue samples grossly affected by lesions were also collected into 10% neutral-buffered
121	formalin for histology and immunohistochemistry to reach a definitive diagnosis.
122	The study protocol was approved by the IACUC of the University of Milan (approval
123	number 109/2016).
124	Semen collection
125	Semen samples were collected at the Veterinary Reference Centre (Turin, Italy) via
126	urethral catheterization using an injectable anesthesia protocol with 0.2 mg/kg
127	methadone (Semfortan, Dechra) and 5 μ g/kg dexmedetomidine (Dexdomitor; Pfizer
128	Italia) premedication, followed by induction with 2 mg/kg propofol (Propovet, Esteve
129	Veterinaria) to effect. ¹⁹ Immediately after collection, semen samples were frozen and
130	sent to our laboratory maintaining the cold chain for molecular biology processing.
131	Serology
132	Anti-FCoV antibodies titres were assessed using an indirect immunofluorescence test
133	performed on 10 multi-well slides produced at the University of Zurich according to
134	Osterhaus et al, ²⁰ by coating each well with 4.5×10^3 PD-5 cells, half of which were
135	infected with swine transmissible gastroenteritis virus (serologically cross-reacting with
136	FCoVs). Twofold dilutions (1:25 to 1:400) of each serum sample were prepared and 20

uL of each dilution was applied to the wells. After incubation for 30 minutes at 37°C in 137 138 a moist chamber, slides were washed with phosphate-buffered saline (PBS), dried and 15 µL of fluorescein isothiocyanate-conjugated rabbit-anticat immunoglobulin (Nordic 139 Immunological Laboratories, Tilburg, The Netherlands) was added to each well. After 140 141 incubation for 30 minutes at 37°C in a moist chamber, slides were washed, dried and observed on a fluorescence microscope. Dilutions were judged as positive when 142 143 showing a clear fluorescent signal in about half of the cells. Samples that were still positive at a 1:400 dilution were further diluted on a twofold basis until negativization. 144

145 *RNA extraction, nRT-PCR and RT-qPCR*

146 RNA was obtained from blood and testicle samples using a NucleoSpin RNA kit

147 (Macherey-Nagel, Bethlehem, PA). Fifty μ L of blood were suspended in 300 μ L of

148 RA1 lysis buffer, while 20 mg of testicles were thinly shredded on sterile plates using

sterile scalpels, followed by vigorous vortexing in RA1 lysis buffer until completely

dissolved. All the further steps were performed according to the manufacturer's

151 instruction.

152 RNA was obtained from semen using TRIzol reagent (Invitrogen Corporation,

153 Carlsbad, CA, USA) according to Das et al.²¹ Samples (starting mean volume: 50 μL; 8-

- 154 $100 \ \mu\text{L}$) were centrifuged (5 min at 7000 x g) and the supernatant was discarded. The
- resulting pellets were washed two times using $100 \ \mu L$ of phosphate buffer saline (PBS)
- 156 for 5 minutes at 7000 x g. To each sample, a volume of TRIzol (Thermo Fischer

157	Scientific, Waltham, USA) equal to 10 times the starting volume of semen was added.
158	After incubation for 5 minutes, 200 μL of chloroform for each ml of TRIzol were added
159	to each sample. After vortexing and incubating at room temperature for 3 minutes,
160	samples were centrifuged (15 min at 12000 x g at 4°C) and the resulting aqueous phase
161	was transferred in RNAse free tubes. Then, 500 μ L of isopropyl alcohol every mL of
162	TRIzol were added to each sample followed by 10 minutes incubation at room
163	temperature. After centrifugation (10 min at 12000 x g at 4°C) the resulting supernatant
164	was eliminated and to each resulting pellet 1 mL of 75% ethanol was added. After
165	centrifugation (5 min at 12000 x g at 4°C), supernatant was discarded, and the sample
166	was dried for 10-15 minutes at room temperature. The pellet was then suspended in 30
167	μL of RNAse free water and incubated at 55 °C for 10 minutes. RNA samples were then
168	frozen at -80°C or immediately used for nRT-PCR.
169	A reverse transcription nested PCR (RT-nPCR) targeting a 177 bp product of the highly
170	conserved 3' untranslated region (3' UTR) of the genome of both type I and type II
171	FCoV was used. ¹⁰ RT-nPCR positive FCoV RNA from a cat with FIP was used as
172	positive control and RNase-free water as negative control. PCR products were
173	visualized under UV transilluminator on a 1.5 % agarose gel stained with ethidium
174	bromide.
175	Quantitative RT-qPCR targeting a 102 bp product of the 7b gene of FCoV was

performed on blood and semen samples as previously described²² with minor

- modifications. Threshold cycle (C_T) number was used as the measure of viral load. The
- 178 lower the C_T , the more virus is present in the sample.
- 179 *Histopathology and immunohistochemistry*
- 180 Formalin fixed samples were sent to the department of Comparative Biomedicine and
- 181 Food Science of the University of Padova for histology and immunohistochemistry
- 182 (IHC). Sections $(3 \mu m)$ obtained from paraffine embedded samples were prepared and
- stained with haematoxylin–eosin for histology with an automated stainer (Autostainer
- 184 XL, Leica Biosystems, Wetzlar, Germany). For IHC, 3 μm paraffin sections were
- 185 placed on surface-coated slides (Superfrost Plus). Slides were incubated at 37° C for 30
- 186 min before the immunostaining performed with an automatic immunostainer (Ventana
- 187 Benchmark XT, Roche-Diagnostics), which uses a kit with a secondary
- 188 antibody with a horseradish peroxidase (HRP)-conjugated polymer that binds
- 189 mouse and rabbit primary antibodies (ultraViews Universal DAB, Ventana Medical
- 190 System). All reagents were dispensed automatically except for the primary antibody,
- 191 which was dispensed by hand. A mouse monoclonal antibody against the feline
- 192 coronavirus was used as primary antibody (clone FIPV3-70 Serotec, Oxfork UK).
- 193 **Results**
- 194 *Caseload*
- 195 The caseload included 31 Domestic Shorthair cats, 6 Maine Coon, 3 Sphynx and 1 each
- 196 for the following breeds: Holy Birman, Chartreux, Norwegian Forest Cat, Persian,

197	Ragdoll, Scottish fold. The age ranged from 6 to 48 months (mean: 11,6; median: 7,5
198	months). The type of samples collected in the 46 cats included in this study is
199	summarized in table 1. Seventeen semen samples were collected: in all these cases
200	additional samples from the same cats were available (serum, blood and testicle in 7
201	cases; serum and blood in 3 cases; serum in 2 cases; blood and testicle in 2 cases; blood
202	in 2 cases; serum and testicle in 1 case).
203	A total of 39 testicles were collected, 24 of which were collected along with a blood and
204	serum sample. The remaining testicles were collected along with blood, serum and
205	semen (7 cats), with blood and semen (2 cats), alone (3 cats), with serum (1 cat), with
206	serum and semen (1 cat), with blood only (1 cat).
207	Serology, PCR and immunoistochemistry
208	Results obtained for each test are shown in table 2. Fourteen out of the 38 cats for which
209	serum was available were negative on serology, with an antibody titer lower than the
210	cut-off of 1:50, which is the threshold of positivity of our laboratory, while 7/38 cats
211	showed an antibody titer of 1:50. The remaining 17 cats showed variable antibody

- titers: specifically the antibody titer was 1:100 in 7 cats, 1:200 in 6 cats, 1:400 in 3 cats
- and 1:800 in 1 cat.
- All the 17 semen samples were negative at both the nRT-PCR and the RT-qPCR for
- FCoV. All the 39 blood samples were negative at the nRT-PCR and at the RT-qPCR,

217	high C_T value (C_T 38.9).
218	Regarding testicles, all the cats were negative at immunohistochemistry for FCoV,
219	while six were positive at the nRT-PCR for FCoV. All the cats from which testicles
220	were collected while alive, were healthy during orchiectomy, except for one cat (n° 43)
221	which was affected by congenital portosystemic shunt. For two cats (n° 42 and 43)
222	serum and blood were not available, therefore serology was not performed. Antibody
223	titers of the remaining cats with PCR positive testicles were negative (cat n°5); 1:100
224	(cat n°18); 1:200 (cat n°15) and 1:400 (cat n°29). Interestingly, the only cat affected by
225	FIP, as confirmed by positive immunohistochemistry for FCoV on brain and
226	cerebellum, gave a negative result both with immunohistochemistry and PCR on
227	testicles.

except for one blood sample that was FCoV positive only using RT-qPCR, with a very

228 **Discussion**

216

FCoV RNA was never detected by nRT-PCR in the blood samples obtained from the cats examined in this study and only one out of 39 blood samples was identified as positive by RT-qPCR. The very high C_T value of the positive sample suggests that the concentration of viral RNA in the sample was extremely low. The RT-qPCR positivity resulted in a seronegative cat and this is in accordance with FCoV infection kinetic.²³ Antibody titers were variable even though with medium-low titers mostly, while titers higher than 1:200 were found only in few cases. Taken together, results of serology and

blood PCR suggest that the virus was present in the environment and stimulated 236 237 transient seroconversion in some of the cats. Positive serology in cats without viral RNA in blood is in fact unlikely to be imputable to a low viral load in blood because 238 samples were analyzed by RT-qPCR, which is a very sensitive method, and it is more 239 likely that results are due to the characteristics of FCoV-host interactions.^{4,10,24} It is also 240 possible that an infected cat could not be identified with PCR on blood if the virus was 241 242 present in the intestinal tract only. Unfortunately, our study design did not include fecal sampling and it is therefore impossible to confirm that seropositive and PCR-negative 243 cats were shedding the virus with feces. However, positive serology demonstrates that 244 the cats included in this study had been in contact with the virus, since cats may remain 245 246 positive also after the clearance of the virus. In particular, antibodies against feline coronavirus are typically fluctuating and cats, especially those from multi-cat 247 248 environments, alternate serological negativities and positivities, corresponding with reinfection episodes.^{11,25} From this perspective, and considering that anti-FCoV 249 antibodies are found in cats with viral RNA both in feces and tissues of healthy animals 250 and in FIP affected cats, ^{11,26,27} the medium-high antibody titers recorded in some of the 251 252 cats of the current study may indicate that these cats had been or still were FCoV infected at the moment of sampling, and therefore it is possible that they were harboring 253 the virus in tissues. This hypothesis is supported by the finding that some testicles were 254 RT-PCR positive, but always negative at immunohistochemistry. This is not surprising, 255

since PCR is characterized by a higher analytical sensitivity compared to

immunohistochemistry.^{28,29} On the other hand, RT-PCR is performed on homogenized
samples, thus not allowing to determine which cellular line composing the testicle was
infected.

260 It is important to highlight that only one of the cats with viral RNA in the testicle and with available serum was seronegative, while all the other cats with PCR-positive 261 262 testicles had titers ranging from 1:100 to 1:400. On the light of what discussed above, this may be explained by two hypotheses. The first hypothesis is that the cats were 263 viremic but with a blood viral load too low to be detected by standard PCR and the virus 264 was present only in the vessels or in the plasma contained in the testicle, but the 265 266 examination with RT-qPCR which is more sensitive than standard PCR makes this hypothesis unlikely as well as the fact that the only viremic cat, even if with a very low 267 268 viral load, was PCR negative on testicles. Another hypothesis, as already demonstrated, is that the examined section for IHC did not include the cells infected by FCoV, which 269 were present in the sections used for RT-PCR instead.^{2,3} Anyway, the section used for 270 271 PCR was carefully handled to avoid hematic contamination as much as possible and therefore it is unlikely that testicles were falsely positive due to contaminating FCoV 272 genome. Also, the presence of FCoV in the testicular vessels would not explain why the 273 274 same positivity was not found on blood, from which a larger amount of sample was used for RNA extraction. The most likely hypothesis is that the virus was isolated in the 275

276 testicular compartment through the blood-testis barrier, as already demonstrated with 277 the blood-brain barrier, thus explaining the discordant results between peripheral blood and testicles.³⁰ 278 Interestingly, the only FIP affected cat resulted negative at RT-PCR on testicles. While 279 280 it was not possible to perform serology and PCR on blood, several tissues of this cats were analyzed for diagnostic purposes. All the tissues examined were negative both at 281 282 PCR and IHC, except for brain and cerebellum, which were the only organs harboring the typical FIP lesions among with intralesional antigen, and a mesenteric lymph node, 283 which was positive at PCR only. This finding supports the evidence of a higher 284 analytical sensitivity of RT-PCR but also the fact that positive PCR results does not 285 allow to distinguish between FIP affected and FCoV infected healthy cats.^{4,29} Moreover, 286 the absence of typical histological lesions as well as of positive IHC demonstrates that 287 288 genital involvement is rare during FIP, especially in non-effusive and localized forms, and probably also the testicle involvement in FCoV infected healthy cats.^{17,18} 289 None of the semen samples were RT-PCR and RT-qPCR positive for FCoV. Only in 290 291 one cat for which both testicles and semen were available, results were discordant, with positive RT-PCR on testicle but negative on semen. It cannot also be excluded that the 292 virus was present on the stromal or vascular tissues of the testicle and not in germinal 293 cells, leading to a negative PCR result on semen. Unfortunately, the negative results in 294 IHC, likely due to the low amount of virus as hypothesized above, does not allow us to 295

296 further elucidate this aspect. It is important also to consider that the diagnostic sensitivity of RT-PCR and RT-qPCR on feline semen is unknown; in this study we 297 applied the method of RNA extraction from semen that is described to have the best 298 analytical sensitivity in comparison with other methods.³¹ Therefore, although unlikely, 299 300 since this method has been successfully used in other studies, the presence of false negative results cannot be excluded.³² Moreover, most of the cats from which semen 301 was tested, were also seronegative or with low antibody titers. Even though 302 303 seronegative cats cannot be considered free from infection for the already discussed kinetics of both the virus and the antibody responses, it is possible that cats were not 304 viremic and that the virus was not systemically spread or localized in some organs at the 305 time of semen collection.³ Unfortunately, for the only cat RT-qPCR positive on blood, 306 semen sample was not available. 307

308 Conclusion

309 Even if PCR positive results on testicles may suggest the venereal route as a potential

310 way of FCoV transmission, FCoV seems not to localize in the semen of tomcats,

therefore the venereal route as a way of transmission seems to be unlikely. Viral RNA

found in testicles could not be correlated with viremic phases, but this finding needs to

be confirmed. At the light of these results, AI seems safer than natural mating,

eliminating the contact between animals and diminishing the probabilities of fecal-oral

FCoV transmission. In light of the limited number of available semen samples and of

316	the fact that samples were obtained almost exclusively from healthy cats, it would be
317	useful to evaluate these data in a FCoV endemic population to have more chance to
318	detect viremic cats, which may possibly harbor FCoV also in semen. In addition, the
319	presence of higher antibody titers may allow to evaluate the potential use of serology as
320	an indicator of viral localization in tissue/semen. Therefore, further studies on a higher
321	number of samples and evaluating differences in semen and testicles of cats with higher
322	antibody titers or with positive RT-PCR on blood are needed.
323	
324	Acknowledgments: none
325	Funding: The authors received no financial support for the research, authorship, and/or
326	publication of this article.
327	Conflict of interest: The authors declared no potential conflicts of interest with respect
328	to the research, authorship, and/or publication of this article.
329	References
330	1. Pedersen, N.C., 2009. A review of feline infectious peritonitis virus infection:
331	1963–2008. J. Feline Med. Surg. 11, 225–258.
332	2. Kipar, A., Bellmann, S., Kremendahl, J., Ko"hler, K and Reinacher, M., 1998.
333	Cellular composition, coronavirus antigen expression and production of specific
334	antibodies in lesions in feline infectious peritonitis. Vet Immunol
335	Immunopathol. 65, 243–257.

336	3.	Paltrinieri, S., Cammarata, M.P., Cammarata, G., Comazzi, S., 1998. Some
337		aspects of humoral and cellular immunity in naturally occuring feline infectious
338		peritonitis. Vet. Immunol. Immunopathol. 65(2-4), 205-220.
339	4.	Pedersen, N.C., 2014. An update on feline infectious peritonitis: virology and
340		immunopathogenesis. Vet. J. 201, 123-132.
341	5.	Tasker, S., 2018. Diagnosis of feline infectious peritonitis: Update on evidence
342		supporting available tests. J. Feline Med. Surg. 20(3), 228-243.
343	6.	Addie, D.D., Jarrett, O., 1992. A study of naturally occurring feline coronavirus
344		infections in kittens. Vet. Rec. 130, 133-137.
345	7.	Addie, D.D., 2000. Clustering of feline coronaviruses in multicat households.
346		Vet. J. 159, 8-9.
347	8.	Addie, D.D., 2012. Feline coronavirus infections, in: Greene, C.E. (Ed.),
348		Infectious diseases of the dog and cat. 4th ed, Elsevier, St Louis, MO, pp. 92-
349		108.
350	9.	Kipar, A., Baptiste, K., Barth, A, Reinacher, M., 2006. Natural FCoV infection:
351		cats with FIP exhibit significantly higher viral loads than healthy infected cats.
352		J. Feline Med. Surg. 8, 69-72.
353	10.	Herrewegh, A.A., de Groot, R.J., Cepica, A., Egberink, A.F., Horzinek, M.C.,
354		Rottier, P.J., 1995. Detection of feline coronavirus RNA in feces, tissues, and

355	body fluids of naturally infected cats by reverse transcriptase PCR. J. Clin,
356	Microbiol. 33, 684-689.
357	11. Addie, D.D., Jarrett, O., 2001. Use of a reverse-transcriptase polymerase chain
358	reaction for monitoring the shedding of feline coronavirus by healthy cats. Ver.
359	Rec. 148(21), 649-653.
360	12. Pelican, K.M., Wildt, D.E., Pukazhenthi, B., Howard, J., 2006. Ovarian control
361	for assisted reproduction in the domestic cat and wild felids. Theriogenology.
362	66(1), 37-48.
363	13. Jordan, H.L., Howard, J., Sellon, R.K., Wildt, D.E., Tompkins, W.A., Kennedy-
364	Stoskopf, S., 1996. Transmission of feline immunodeficiency virus in domestic
365	cats via artificial insemination. J. Virol. 70(11), 8224-8228.
366	14. Dejucq, N., Jegou, B., 2001. Viruses in the Mammalian Male Genital Tract and
367	Their Effects on the Reproductive System. Microbiol. Mol. Biol. Rev. 65(2),
368	208-231.
369	15. Andrew, S.E., 2000. Feline infectious peritonitis. Vet. Clin. North. Am. Small.
370	Anim. Pract. 30, 987-1000.
371	16. Foster, R.A., Caswell, J.L., Rinkardt, N., 1996. Chronic fibrinous and necrotic
372	orchitis in a cat. Can. Vet. J. 37(11), 681-982.
373	17. Sigurðardóttir, O.G., Kolbjørnsen, O., Lutz, H., 2001. Orchitis in a cat
374	associated with coronavirus infection. J. Comp. Pathol. 124, 219-222.

375	18. Rota, A., Paltrinieri, S., Jussich, S., Ubertalli, G., Appino, S., 2008. Priapism in
376	a castrated cat associated with feline infectious peritonitis. J. Feline Med.
377	Surg.10(2), 181-184.
378	19. Pisu, M.C., Ponzio, P., Rovella, C., Baravalle, M., Veronesi, M.C., 2017.
379	Usefulness of an injectable anaesthetic protocol for semen collection through
380	urethral catheterisation in domestic cats. J. Feline Med. Surg.19(10), 1087-1090.
381	20. Osterhaus, A.D., Horzinek, M.C., Reynolds, D.J., 1977. Seroepidemiology of
382	feline infectious peritonitis virus infections using transmissible gastroenteritis
383	virus as antigen. Zentralbl Veterinarmed 1977; B 24, 835-841.
384	21. Das, P.J., Paria, N., Gustafson-Seabury, A., Vishnoi, M., Chaki, S.P., Love,
385	C.C., Varner, D.D., Chowdhary, B.P., Raudsepp, T., 2010. Total RNA isolation
386	from stallion sperm and testis biopsies. Theriogenology. 74(6), 1099-1106.
387	22. Gut, M., Leutenegger, C.M., Huder, J.B., Pedersen, N.C. and Lutz, H., 1999.
388	One-tube fluorogenic reverse transcription-polymerase chain reaction for the
389	quantitation of feline coronaviruses. J Virol Methods, 77(1), 37-46.
390	23. Gunn-Moore, D.A., Gruffydd-Jones, T.J. and Harbour, D.A., 1998. Detection of
391	feline coronaviruses by culture and reverse transcriptase-polymerase chain
392	reaction of blood samples from healthy cats and cats with clinical feline
393	infectious peritonitis. Vet Microbiol, 62(3), 193-205.

394	24. Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Hartmann, K., 2017. Comparison
395	of real-time reverse transcriptase polymerase chain reaction of peripheral blood
396	mononuclear cells, serum and cell-free body cavity effusion for the diagnosis of
397	feline infectious peritonitis. J. Feline Med. Surg. 19(4), 344-350.
398	25. Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., 1997. Risk factors for feline
399	infectious peritonitis among cats in multiple-cat environments with endemic
400	feline enteric coronavirus. J. Am. Vet. Med. Assoc. 210(9), 1313-1318.
401	26. Addie, D.D., Paltrinieri, S., Pedersen, N.C., 2004. Recommendations from
402	workshops of the second international feline coronavirus/feline infectious
403	peritonitis symposium. J. Feline Med. Surg. 6(2), 125-130.
404	27. Meli, M.L., Burr, P., Decaro, N., Graham, E., Jarrett, O., Lutz, H., McDonald,
405	M., Addie, D.D., 2013. Samples with high virus load cause a trend toward lower
406	signal in feline coronavirus antibody tests. J. Feline Med. Surg. 15(4), 295-299.
407	28. Kipar, A., Meli, M.L., Baptiste, K.E., Bowker, L.J., Lutz, H., 2010. Sites of
408	feline coronavirus persistence in healthy cats. J. Gen. Virol. 91, 1698-1707.
409	29. Porter, E., Tasker, S., Day, M.J., Harley, R., Kipar, A., Siddell, S.G., Helps,
410	C.R., 2014. Amino acid changes in the spike protein of feline coronavirus
411	correlate with systemic spread of virus from the intestine and not with feline
412	infectious peritonitis. Vet. Res. 45, 1-11.

413	30. Doenges, S.J., Weber, K., Dorsch, R., Fux, R., Fischer, A., Matiasek, L.A.,
414	Matiasek, K., Hartmann, K., 2016. Detection of feline coronavirus in
415	cerebrospinal fluid for diagnosis of feline infectious peritonitis in cats with and
416	without neurological signs. J. Feline Med. Surg. 18(2), 104-109.
417	31. Hoffmann, B., Schulz, C., Beer, M., 2013. First detection of Schmallenberg
418	virus RNA in bovine semen, Germany. Vet Microbiol. 167(3-4), 289-295.
419	32. Vanbinst, T., Vandenbussche, F., Dernelle, E., De Clercq, K., 2010. A duplex
420	real-time RT-PCR for the detection of bluetongue virus in bovine semen. J.
421	Virol. Methods. 169(1), 162-168.
422	33. Meli, M.L., Kipar, A., Müller, C., Jenal, K., Gönczi, E., Borel, N., Gunn-Mooree
423	D., Chalmersf, S., Linf, F., Reinacher, M., Lutz, H., 2004. High viral loads
424	despite absence of clinical and pathological findings in cats experimentally
425	infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected
426	cats. J. Feline Med. Surg. 6(2),69-81.
427	
428	
429	
430	

10	1
43	Т
	_

- Table 1. Data on signalment, type of sample collected from the cats and included in this
- 437 study.

N°	Breed	Age (months)	Samples	Total
1	Persian	12	Blood, serum, testicle	
2	ES	6	Blood, serum, testicle	
3	ES	7	Blood, serum, testicle	
4	ES	6	Blood, serum, testicle	
5	ES	6	Blood, serum, testicle	
6	ES	8	Blood, serum, testicle	
7	ES	6	Blood, serum, testicle	
8	ES	6	Blood, serum, testicle	
9	ES	7	Blood, serum, testicle	24
10	ES	6	Blood, serum, testicle	
11	ES	7	Blood, serum, testicle	
12	ES	7	Blood, serum, testicle	
13	ES	8	Blood, serum, testicle	
14	ES	7	Blood, serum, testicle	
15	ES	7	Blood, serum, testicle	
16	ES	9	Blood, serum, testicle	
17	ES	8	Blood, serum, testicle	

18	ES	7	Blood, serum, testicle	
19	ES	24	Blood, serum, testicle	
20	ES	6	Blood, serum, testicle	
21	ES	7	Blood, serum, testicle	
22	Birman	9	Blood, serum, testicle	
23	ES	36	Blood, serum, testicle	
24	Sphynx	11	Blood, serum, testicle	
25	Ragdoll	13	Blood, serum, semen, testicle	
26	ES	24	Blood, serum, semen, testicle	
27	Sphynx	11	Blood, serum, semen, testicle	
28	ES	6	Blood, serum, semen, testicle	7
29	Maine Coon	14	Blood, serum, semen, testicle	
30	Scottish gold	11	Blood, serum, semen, testicle	
31	ES	7	Blood, serum, semen, testicle	
32	Maine Coon	27	Blood, serum, semen	
33	Chartreux	9	Blood, serum, semen	3
34	Maine Coon	48	Blood, serum, semen	
35	Norwegian Forest cat	12	Serum, semen	2
36	Sphynx	10	Serum, semen	2
37	Maine Coon	18	Blood, semen	2
38	Maine Coon	30	Blood, semen	2
39	Maine Coon	25	Blood, semen, testicle	2
40	ES	7	Blood, semen, testicle	2
41	ES	6	Testicle	
42	ES	7	Testicle	3
43	ES	6	Testicle	
44	ES	8	Serum, Testicle	1
45	ES	7	Serum, Semen, Testicle	1
46	ES	6	Blood, Testicle	1

Table 2. Results of the test performed on each cat involved in the study.

		RT-nPCR			RT-q		
N°	Serology	Blood	Semen	Testicle	Blood	Semen	IHC

4	1:800	neg	na	neg	neg	na	neg
8	1:400	neg	na	neg	neg	na	neg
9	1:400	neg	na	neg	neg	na	neg
15	1:200	neg	na	pos	neg	na	neg
6	1:200	neg	na	neg	neg	na	neg
17	1:200	neg	na	neg	neg	na	neg
22	1:200	neg	na	neg	neg	na	neg
24	1:200	neg	na	neg	neg	na	neg
2	1:100	neg	na	neg	neg	na	neg
10	1:100	neg	na	neg	neg	na	neg
12	1:100	neg	na	neg	neg	na	neg
18	1:100	neg	na	pos	neg	na	neg
21	1:100	neg	na	neg	neg	na	neg
14	1:50	neg	na	neg	neg	na	neg
20	1:50	neg	na	neg	neg	na	neg
23	1:50	neg	na	neg	neg	na	neg
1	1:25	neg	na	neg	pos	na	neg
3	<1:25	neg	na	neg	neg	na	neg
5	<1:25	neg	na	neg	neg	na	neg
7	<1:25	neg	na	neg	neg	na	neg
11	<1:25	neg	na	neg	neg	na	neg
13	<1:25	neg	na	neg	neg	na	neg
16	<1:25	neg	na	neg	neg	na	neg
19	<1:25	neg	na	pos	neg	na	neg
29	1:400	neg	neg	pos	neg	neg	neg
27	1:100	neg	neg	neg	neg	neg	neg
25	1:50	neg	neg	neg	neg	neg	neg
26	1:50	neg	neg	neg	neg	neg	neg
28	1:50	neg	neg	neg	neg	neg	neg
30	1:50	neg	neg	neg	neg	neg	neg
31	<1:50	neg	neg	neg	neg	neg	neg
32	<1:25	neg	neg	na	neg	neg	na
33	<1:25	neg	neg	na	neg	neg	na
34	<1:25	neg	neg	na	neg	neg	na
36	1:200	na	neg	na	na	neg	na

35	<1:25	na	neg	na	na	neg	na
44	1:200	na	na	neg	na	na	neg
45	<1:50	na	neg	neg	na	neg	neg
37	na	neg	neg	na	neg	neg	na
38	na	neg	neg	na	neg	neg	na
39	na	neg	neg	neg	neg	neg	neg
40	na	neg	neg	neg	neg	neg	neg
41	na	na	na	neg	na	na	neg
42	na	na	na	pos	na	na	neg
43	na	na	na	pos	na	na	neg
46	na	neg	na	neg	neg	na	neg

441 nRT-PCR: nested reverse transcriptase-polymerase chain reaction; RT-qPCR reverse

442 transcriptase-quantitative polymerase chain reaction; IHC: immunohistochemistry for

443 FCoV; na: specimen not available; neg: negative; pos: positive.

444