530 research outputs found

    Genetic determinants of the response to bezafibrate treatment in the lower extremity arterial disease event reduction (LEADER) trial.

    No full text
    Genetic determinants of baseline levels and the fall in plasma triglyceride and fibrinogen levels in response to bezafibrate treatment were examined in 853 men taking part in the lower extremity arterial disease event reduction (LEADER) trial. Three polymorphisms in the peroxisome proliferator activated receptor alpha (PPARalpha) gene were investigated (L162V, G>A in intron 2 and G>C in intron 7), two in the apolipoprotein CIII (APOC3) gene (-482C>T and -455T>C) and one in the beta-fibrinogen (FIBB) gene (-455G>A). The presence of diabetes (n=158) was associated with 15% higher triglyceride levels at baseline compared to non-diabetics (n=654) (PC substitution. In the non-diabetic patients, the PPARalpha V162 allele was significantly associated with 9% higher baseline triglyceride levels (P<0.03) and a similar, but non-significant trend was seen for the intron 7 polymorphism. Overall, triglyceride levels fell by 26% with 3 months of bezafibrate treatment, and current smokers showed a poorer response compared to ex/non-smokers (23% fall compared to 28% P=0.03), but none of the genotypes examined had a significant influence on the magnitude of response. Carriers of the -455A polymorphism of the FIBB gene had, as expected, marginally higher baseline fibrinogen levels, 3.43 versus 3.36 g/l (P=0.055), but this polymorphism did not affect response to treatment. Overall, fibrinogen levels fell by 12%, with patients with the highest baseline fibrinogen levels showing the greatest decrease in response to bezafibrate. For both the intron 2 and the L162V polymorphisms of the PPARalpha gene there was a significant interaction (both P<0.01) between genotype and baseline levels of fibrinogen on the response of fibrinogen levels to bezafibrate, such that individuals carrying the rare alleles in the lowest tertile showed essentially no overall decrease compared to a 0.18 g/l fall in homozygotes for the common allele. Thus while these genotypes are a minor determinant of baseline triglyceride and fibrinogen levels, there is little evidence from this study that the magnitude of response to bezafibrate treatment in men with peripheral vascular disease is determined by variation at these loci

    Ejaculate sperm number compensation in stalk-eyed flies carrying a selfish meiotic drive element

    Get PDF
    Meiotic drive genes cause the degeneration of non-carrier sperm to bias transmission in their favour. Males carrying meiotic drive are expected to suffer reduced fertility due to the loss of sperm and associated harmful side-effects of the mechanisms causing segregation distortion. However, sexual selection should promote adaptive compensation to overcome these deleterious effects. We investigate this using SR, an X-linked meiotic drive system in the stalk-eyed fly, Teleopsis dalmanni. Despite sperm destruction caused by drive, we find no evidence that SR males transfer fewer sperm to the female's spermathecae (long-term storage organs). Likewise, migration from the spermathecae to the ventral receptacle for fertilisation is similar for SR and wildtype male sperm, both over short and long time-frames. In addition, sperm number in storage is similar even after males have mated multiple times. Our study challenges conventional assumptions about the deleterious effects of drive on male fertility. This suggests that SR male ejaculate investment per ejaculate has been adjusted to match sperm delivery by wildtype males. We interpret these results in the light of recent theoretical models that predict how ejaculate strategies evolve when males vary in the resources allocated to reproduction or in sperm fertility. Adaptive compensation is likely in species where meiotic drive has persisted over many generations and predicts a higher stable frequency of drive maintained in wild populations. Future research must determine exactly how drive males compensate for failed spermatogenesis, and how such compensation may trade-off with investment in other fitness traits

    Superpartner spectrum of minimal gaugino-gauge mediation

    Full text link
    We evaluate the sparticle mass spectrum in the minimal four-dimensional construction that interpolates between gaugino and ordinary gauge mediation at the weak scale. We find that even in the hybrid case -- when the messenger scale is comparable to the mass of the additional gauge particles -- both the right-handed as well as the left-handed sleptons are lighter than the bino in the low-scale mediation regime. This implies a chain of lepton production and, consequently, striking signatures that may be probed at the LHC already in the near future.Comment: 8 pages, 3 figures; V2: refs and a few comments added; V3 title change

    Quantum Black Holes from Cosmic Rays

    Get PDF
    We investigate the possibility for cosmic ray experiments to discover non-thermal small black holes with masses in the TeV range. Such black holes would result due to the impact between ultra high energy cosmic rays or neutrinos with nuclei from the upper atmosphere and decay instantaneously. They could be produced copiously if the Planck scale is in the few TeV region. As their masses are close to the Planck scale, these holes would typically decay into two particles emitted back-to-back. Depending on the angles between the emitted particles with respect to the center of mass direction of motion, it is possible for the simultaneous showers to be measured by the detectors.Comment: 6 pages, 3 figure

    Viability of MSSM scenarios at very large tan(beta)

    Full text link
    We investigate the MSSM with very large tan(beta) > 50, where the fermion masses are strongly affected by loop-induced couplings to the "wrong" Higgs, imposing perturbative Yukawa couplings and constraints from flavour physics. Performing a low-energy scan of the MSSM with flavour-blind soft terms, we find that the branching ratio of B->tau nu and the anomalous magnetic moment of the muon are the strongest constraints at very large tan(beta) and identify the viable regions in parameter space. Furthermore we determine the scale at which the perturbativity of the Yukawa sector breaks down, depending on the low-energy MSSM parameters. Next, we analyse the very large tan(beta) regime of General Gauge Mediation (GGM) with a low mediation scale. We investigate the requirements on the parameter space and discuss the implied flavour phenomenology. We point out that the possibility of a vanishing Bmu term at a mediation scale M = 100 TeV is challenged by the experimental data on B->tau nu and the anomalous magnetic moment of the muon.Comment: 29 pages, 7 figures. v2: discussion in sections 1 and 4 expanded, conclusions unchanged. Matches version published in JHE

    General Gauge Mediation at the Weak Scale

    Get PDF
    We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to mhm_h coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.Comment: 43 pages, 20 figures, mathematica package included in the sourc

    Critical Trapped Surfaces Formation in the Collision of Ultrarelativistic Charges in (A)dS

    Full text link
    We study the formation of marginally trapped surfaces in the head-on collision of two ultrarelativistic charges in (A)dS(A)dS space-time. The metric of ultrarelativistic charged particles in (A)dS(A)dS is obtained by boosting Reissner-Nordstr\"om (A)dS(A)dS space-time to the speed of light. We show that formation of trapped surfaces on the past light cone is only possible when charge is below certain critical - situation similar to the collision of two ultrarelativistic charges in Minkowski space-time. This critical value depends on the energy of colliding particles and the value of a cosmological constant. There is richer structure of critical domains in dSdS case. In this case already for chargeless particles there is a critical value of the cosmological constant only below which trapped surfaces formation is possible. Appearance of arbitrary small nonzero charge significantly changes the physical picture. Critical effect which has been observed in the neutral case does not take place more. If the value of the charge is not very large solution to the equation on trapped surface exists for any values of cosmological radius and energy density of shock waves. Increasing of the charge leads to decrease of the trapped surface area, and at some critical point the formation of trapped surfaces of the type mentioned above becomes impossible.Comment: 30 pages, Latex, 7 figures, Refs. added and typos correcte

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio

    Minimum length effects in black hole physics

    Full text link
    We review the main consequences of the possible existence of a minimum measurable length, of the order of the Planck scale, on quantum effects occurring in black hole physics. In particular, we focus on the ensuing minimum mass for black holes and how modified dispersion relations affect the Hawking decay, both in four space-time dimensions and in models with extra spatial dimensions. In the latter case, we briefly discuss possible phenomenological signatures.Comment: 29 pages, 12 figures. To be published in "Quantum Aspects of Black Holes", ed. X. Calmet (Springer, 2014

    Hawking emission from quantum gravity black holes

    Get PDF
    We address the issue of modelling quantum gravity effects in the evaporation of higher dimensional black holes in order to go beyond the usual semi-classical approximation. After reviewing the existing six families of quantum gravity corrected black hole geometries, we focus our work on non-commutative geometry inspired black holes, which encode model independent characteristics, are unaffected by the quantum back reaction and have an analytical form compact enough for numerical simulations. We consider the higher dimensional, spherically symmetric case and we proceed with a complete analysis of the brane/bulk emission for scalar fields. The key feature which makes the evaporation of non-commutative black holes so peculiar is the possibility of having a maximum temperature. Contrary to what happens with classical Schwarzschild black holes, the emission is dominated by low frequency field modes on the brane. This is a distinctive and potentially testable signature which might disclose further features about the nature of quantum gravity.Comment: 36 pages, 18 figures, v2: updated reference list, minor corrections, version matching that published on JHE
    corecore