3,142 research outputs found
The Topology of Branching Universes
The purpose of this paper is to survey the possible topologies of branching
space-times, and, in particular, to refute the popular notion in the literature
that a branching space-time requires a non-Hausdorff topology
Modus Vivendi Beyond the Social Contract: Peace, Justice, and Survival in Realist Political Theory
This essay examines the promise of the notion of modus vivendi for realist political theory. I interpret recent theories of modus vivendi as affirming the priority of peace over justice, and explore several ways of making sense of this idea. I proceed to identify two key problems for modus vivendi theory, so conceived. Normatively speaking, it remains unclear how this approach can sustain a realist critique of Rawlsian theorizing about justice while avoiding a Hobbesian endorsement of absolutism. And conceptually, the theory remains wedded to a key feature of social contract theory: political order is conceived as based on agreement. This construes the horizontal tensions among individual or group agents in society as prior to the vertical, authoritative relations between authorities and their subjects. Political authority thereby appears from the start as a solution to societal conflict, rather than a problem in itself. I argue that this way of framing the issue abstracts from political experience. Instead I attempt to rethink the notion of modus vivendi from within the lived experience of political conflict, as oriented not primarily toward peace, but political survival. With this shift of perspective, the idea of modus vivendi shows us, pace Bernard Williams, that the “first political question” is not how to achieve order and stability, but rather: what can I live with
Recommended from our members
Correction: The Relationship between Therapeutic Alliance and Service User Satisfaction in Mental Health Inpatient Wards and Crisis House Alternatives: A Cross-Sectional Study
Oncogenic conversion of the thyroid hormone receptor by altered nuclear transport
Nuclear receptors (NRs) are transcription factors whose activity is modulated by ligand binding. These receptors are at the core of complex signaling pathways and act as integrators of many cellular signals. In the last decade our understanding of NRs has greatly evolved. In particular, regulation of NR subcellular dynamics has emerged as central to their activity. Research on the subcellular distribution of the thyroid hormone receptor (TR) has revealed new dimensions in the complexity of NR regulation, and points to the possibility that NR mislocalization plays a key role in oncogenesis. For many years, TR was thought to reside exclusively in the nucleus. It is now known that TR is a dynamic protein that shuttles between the nucleus and cytoplasm. TR is localized to the nucleus in a phosphorylated form, suggesting that compartment-specific phosphorylation mediates cross-talk between multiple cell signaling pathways. The oncoprotein v-ErbA, a viral-derived dominant negative variant of TR is actively exported to the cytoplasm by the CRM1 export receptor. Strikingly, the oncoprotein causes mislocalization of cellular TR and some of its coactivators by direct interaction. Here, we offer some perspectives on the role of subcellular trafficking in the oncogenic conversion of TR, and propose a new model for oncoprotein dominant negative activity
Monte Carlo Simulations of Conformal Theory Predictions for the 3-state Potts and Ising Models
The critical properties of the 2D Ising and 3-state Potts models are
investigated using Monte Carlo simulations. Special interest is given to
measurement of 3-point correlation functions and associated universal objects,
i.e. structure constants. The results agree well with predictions coming from
conformal field theory confirming, for these examples, the correctness of the
Coulomb gas formalism and the bootstrap method.Comment: 11 pages, 6 Postscript figures, uses Revte
Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension
112216Ysciescopu
A probabilistic fatigue analysis of multiple site damage
The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel
Thermo-mechanical analysis of dental silicone polymers
Soft lining materials are used to replace the inner surface of a conventional complete denture, especially for weak elderly patients, with delicate health who cannot tolerate the hard acrylic denture base. Most of these patients have fragile supporting mucosa, excessive residual ridge resorption, particularly on the mandibular arch. The application of a soft liner to the mandibular denture allows absorbing impact forces during mastication and relieving oral mucosa. Actually, the silicone rubbers constitute the main family of commercialised soft lining materials. This study was conducted to understand the relationships between the mechanical properties and the physical structure of polysiloxanes. For this purpose, a series of polysiloxanes of various chemical compositions have been investigated. The evolution of their physical structure as a function of temperature has been followed by differential scanning calorimetry (DSC). In order to facilitate comparisons, the mechanical modulus has been analysed upon the same heating rate using dynamic mechanical analysis (DMA). Polysiloxanes actually commercialised as soft denture liners are three-dimensional networks: the flexibility of chains allows a crystalline organisation in an amorphous phase leading to the low value of the shear modulus. The dynamic mechanical analysis shows that they are used in the rubbery state. So, polysiloxanes have steady mechanical properties during physiological utilisation
ATLTest: A White-Box Test Generation Approach for ATL Transformations
International audienceMDE is being applied to the development of increasingly complex systems that require larger model transformations. Given that the specification of such transformations is an error-prone task, techniques to guarantee their quality must be provided. Testing is a well-known technique for finding errors in programs. In this sense, adoption of testing techniques in the model transformation domain would be helpful to improve their quality. So far, testing of model transformations has focused on black-box testing techniques. Instead, in this paper we provide a white-box test model generation approach for ATL model transformations
The circumstellar environment of T Tau S at high spatial and spectral resolution
We have obtained the first high spatial (0.05'') and spectral (R~35000)
resolution 2 micron spectrum of the T Tau S tight binary system using adaptive
optics on the Keck II telescope. We have also obtained the first 3.8 and 4.7
micron images that resolve the three components of the T Tau multiple system,
as well as new 1.6 and 2.2 micron images. Together with its very red
near-infrared colors, the spectrum of T Tau Sb shows that this T Tauri star is
extincted by a roughly constant extinction of Av~15 mag, which is probably the
0.7''x0.5'' circumbinary structure recently observed in absorption in the
ultraviolet. T Tau Sa, which is also observed through this screen and is
actively accreting, further possesses a small edge-on disk that is evidenced by
warm (390 K), narrow overtone CO rovibrational absorption features in our
spectrum. We find that T Tau Sa is most likely an intermediate-mass star
surrounded by a semi-transparent 2-3 AU-radius disk whose asymmetries and short
Keplerian rotation explain the large photometric variability of the source on
relatively short timescales. We also show that molecular hydrogen emission
exclusively arises from the gas that surrounds T Tau S and that its spatial and
kinematic structure, while providing suggestive evidence for a jet-like
structure, is highly complex.Comment: accepted for publication in the Astrophysical Journal; 41 pages, 10
figure
- …