18 research outputs found

    A new geodemographic classification of commuting flows for England and Wales

    Get PDF
    This paper aims to contribute to the area of geodemographic research through the development of a new and novel flow-based classification of commuting for England and Wales. In doing so, it applies an approach to the analysis of commuting in which origin-destination flow-data, collected as part of the 2011 census of England and Wales, are segmented into groups based on shared similarities across multiple demographic and socioeconomic attributes. K-means clustering was applied to 49 flow-based commuter variables for 513,892 interactions that captured 18.4 million of the 26.5 million workers recorded as part of the 2011 census of England and Wales. The final classification resulted in an upper-tier of nine ‘Supergroups’ which were subsequently partitioned to derive a lower-tier of 40 ‘Groups’. A nomenclature was developed and associated pen-portraits derived to provide basic signposting to the dominant characteristics of each cluster. Analysis of a selection of patterns underlying the nine-fold Supergroup configuration revealed a highly variegated structure of commuting in England and Wales. The classification has potentially wide-ranging descriptive and analytical applications within research and policy domains and the approach would be equally transferable to other countries and contexts where origin-destination data is disaggregated based on commuter characteristics

    Cross-hemispheric transport of Central African biomass burning pollutants: implications for downwind ozone production

    Get PDF
    Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3) downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO) tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT) had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT) plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14–15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2) enhancements in both plumes. It is estimated that, for the period 1–15 August, the ratio of Biomass Burning (BB) tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic. Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate in-situ net photochemical O3 production rates in these plumes during transport downwind of West Africa. The mid-troposphere plume spreads over altitude between 1.5 and 6 km over the Atlantic Ocean. Even though the plume was old, it was still very photochemically active (mean net O3 production rates over 10 days of 2.6 ppbv/day and up to 7 ppbv/day during the first days) above 3 km especially during the first few days of transport westward. It is also shown that the impact of high aerosol loads in the MT plume on photolysis rates serves to delay the peak in modelled O3 concentrations. These results suggest that a significant fraction of enhanced O3 in mid-troposphere over the Atlantic comes from BB sources during the summer monsoon period. According to simulated occurrence of such transport, BB may be the main source for O3 enhancement in the equatorial south Atlantic MT, at least in August 2006. The upper tropospheric plume was also still photochemically active, although mean net O3 production rates were slower (1.3 ppbv/day). The results suggest that, whilst the transport of BB pollutants to the UT is variable (as shown by the mesoscale model simulations), pollution from biomass burning can make an important contribution to additional photochemical production of O3 in addition to other important sources such as nitrogen oxides (NOx) from lightning

    Deep Convective Microphysics Experiment (DCMEX) coordinated aircraft and ground observations: microphysics, aerosol, and dynamics during cumulonimbus development

    Get PDF
    Cloud feedbacks associated with deep convective anvils remain highly uncertain. In part, this uncertainty arises from a lack of understanding of how microphysical processes influence the cloud radiative effect. In particular, climate models have a poor representation of microphysics processes, thereby encouraging the collection and study of observation data to enable better representation of these processes in models. As such, the Deep Convective Microphysics Experiment (DCMEX) undertook an in situ aircraft and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar, thermodynamics, dynamics, electric fields, and weather. This paper introduces the potential data user to DCMEX observational campaign characteristics, relevant instrument details, and references to more detailed instrument descriptions. Also included is information on the structure and important files in the dataset in order to aid the accessibility of the dataset to new users. Our overview of the campaign cases illustrates the complementary operational observations available and demonstrates the breadth of the campaign cases observed. During the campaign, a wide selection of environmental conditions occurred, ranging from dry, northerly air masses with low wind shear to moist, southerly air masses with high wind shear. This provided a wide range of different convective growth situations. Of 19 flight days, only 2 d lacked the formation of convective cloud. The dataset presented (https://doi.org/10.5285/B1211AD185E24B488D41DD98F957506C; Facility for Airborne Atmospheric Measurements et al., 2024) will help establish a new understanding of processes on the smallest cloud- and aerosol-particle scales and, once combined with operational satellite observations and modelling, can support efforts to reduce the uncertainty of anvil cloud radiative impacts on climate scales

    Aircraft ice-nucleating particle and aerosol composition measurements in the western North American Arctic

    No full text
    Knowledge of the temperature-dependent concentration of ice-nucleating particles (INPs) is crucial to understanding the properties of mixed-phase clouds. However, the sources, transport and removal of INPs around the globe, and particularly in the Arctic region, are poorly understood. In the Arctic winter and spring, when many local sources are covered by ice and snow, it is not clear which INP types are important. In this study, we present a new dataset of aircraft-based immersion mode INP measurements and aerosol size-resolved composition in the western North American Arctic from 11 to 21 March 2018. Aerosol samples were collected between ∼ 70 and 600 m above the surface on filters that were analysed using both a freezing droplet-based assay and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The measured INP concentrations were at or close to the limit of detection, with concentrations at −20 ∘C of 1 L−1 or below. The size-resolved composition measurements indicates that the aerosol concentrations were low, dominated mostly by sea spray aerosol and mineral dust. Further analysis shows that mineral dust is important for the ice-nucleating properties of our samples, dominating over the sea spray aerosol particles in the four cases we analysed, suggesting that mineral dust is a relevant type of INP in the Alaskan springtime Arctic. Furthermore, the INP concentrations are more consistent with fertile soil dusts that have an ice-active biological component than what would be expected for the ice-active mineral K-feldspar alone. While we cannot rule out local high-latitude sources of dust, the relatively small size of the mineral dust implies that the dust was from distant sources

    Southern Alaska as a source of atmospheric mineral dust and ice-nucleating particles

    Get PDF
    Ice-nucleating particles (INPs) influence cloud radiative properties and climate; however, INP sources and concentrations are poorly constrained, particularly in high-latitude regions. Southern Alaska is a known source of high-latitude dust, but its contribution to atmospheric mineral dust and INP concentrations has not been quantified. We show that glacial dust collected in southern Alaska is an effective ice-nucleating material under conditions relevant for mixed-phase clouds and is more active than low-latitude dust because of a biological component that enhances its activity. We use dispersion modeling to show that this source contributes to the regional INP population and that the dust emitted is transported over a broad area of North America, reaching altitudes where it could cause cloud glaciation. Our results highlight the importance of quantifying emissions and ice-nucleating characteristics of high-latitude dusts and suggest that the ice-nucleating ability of emitted dust in these regions should be represented in models using different parametrizations to low-latitude dust

    Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing

    No full text
    The flux of bioavailable Fe from mineral dust to the surface ocean is controlled not only by the processes in the atmosphere but also by the nature and source of the dust. In this study, we investigated how the nature of Fe minerals in the dust affects its potential Fe solubility (Fe-psol) employing traditional and modern geochemical, mineralogical, and microscopic techniques. The chemical and mineralogical compositions, particularly Fe mineralogy, in soil samples as dust precursors collected from North African dust source regions were determined. The Fe-psol was measured after 3 days of contact with sulfuric acid at pH 2 to simulate acid processes in the atmosphere. Fe-psol of the soil dust samples were compared with calculated predictions of Fe-psol based on the amount of individual Fe-bearing minerals present in the samples and Fe solubilities of corresponding standard minerals. The calculated Fe-psol deviated significantly from the measured Fe-psol of the soil dust samples. We attributed this to the variability in properties of Fe minerals (e. g., size of Fe oxides and heterogeneity of chemical compositions of clay minerals) in soil dusts in comparison to the standard minerals. There were, however, clear relationships between the degree of chemical weathering of North African soils and Fe-psol. The Parker index and ratio of ascorbate plus dithionite Fe to total Fe ((FeA+FeD)/FeT) are positively and negatively correlated with Fe-psol, respectively. In addition, the ratio of FeA/(FeA+FeD), which decreases with aging of the Fe oxides, was found to be positively correlated with Fe-psol in the soil dusts. Overall, our results indicate that there is a significant regional variability in the chemical and Fe mineralogical compositions of dusts across North African sources, as a result of the differences in chemical weathering and aging of Fe oxides. Furthermore, the indices for these weathering processes can provide an estimate of the fraction of Fe which can be solubilized if acid processed in the atmosphere

    Human-mediated drivers of change - impacts on coastal ecosystems and marine biota of South Africa

    Get PDF
    Coastal ecosystems are highly vulnerable to human-mediated drivers of global change because they are located at the land–ocean interface and often host centres of urbanisation and development. The South African coastline comprises several distinct coastal ecoregions that support a wide range of coastal (inshore) ecosystems, including rocky, sandy and mixed shores, kelp beds, estuaries and seagrass communities. A growing body of evidence indicates that local air and sea temperatures, wind patterns, ocean current speed and upwelling regimes are all being affected by human-mediated climate change. In addition, anthropogenic activities, such as shipping (introducing coastal bioinvasives), exploitation of coastal marine resources, industry (releasing pollutants) and urban development, act synergistically with climate change to place pressure on coastal ecosystems and their biota. The aim of this review was primarily to synthesise and update research into causes of direct and indirect human-mediated global change and their effects on South African coastal systems. It incorporates both historic and the latest regional research on climate change and anthropogenic threats across the ecosystems listed above, much of which was supported by the South African Network for Coastal and Oceanic Research (SANCOR), specifically the SEAChange programme in recent years. It is evident that all these ecosystems are vulnerable to all the drivers considered, albeit to differing degrees, depending on their location on the coast. Whereas some bioinvasives have had a dramatic impact on rocky shore systems on the West Coast, their impact has been moderate on the South Coast and minimal on the East Coast; exploitation shows the reverse pattern. Furthermore, the impacts of human-mediated drivers on coastal ecosystems are synergistic. Of major interest is the fact that the West Coast and parts of the South Coast are exhibiting cooling trends in offshore sea surface temperatures, rather than warming. Correspondingly, a geographical spread of organisms associated with West and South-West Coast rocky shores and kelp beds has tended to be eastwards around Cape Point, rather than northwards along the West Coast as would have been expected with warming sea temperatures. Overall, significant progress has been made toward a better understanding of the combined pressures on each ecosystem and knowledge gaps have been identified, thus helping to direct future research themes
    corecore