5,793 research outputs found

    Four wave mixing with self-phase matching due to collective atomic recoil

    Get PDF
    We describe a method for non-degenerate four-wave mixing in a cold sample of 4-level atoms. An integral part of the four-wave mixing process is a collective instability which spontaneously generates a periodic density modulation in the cold atomic sample with a period equal to half of the wavelength of the generated high-frequency optical field. Due to the generation of this density modulation, phase-matching between the pump and scattered fields is not a necessary initial condition for this wave-mixing process to occur, rather the density modulation acts to "self phase-match" the fields during the course of the wave-mixing process. We describe a one-dimensional model of this process, and suggest a proof-of-principle experiment which would involve pumping a sample of cold Cs atoms with three infra-red pump fields to produce blue light.Comment: to appear in Physical Review Letter

    Inducing strong density modulation with small energy dispersion in particle beams and the harmonic amplifier free electron laser

    Get PDF
    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative electron/radiation phase changes is used to demonstrate supression of the fundamental growth in a high gain FEL so that the FEL lases at the harmonic only

    An extended model of the quantum free-electron laser

    Get PDF
    Previous models of the quantum regime of operation of the Free Electron Laser (QFEL) have performed an averaging and the application of periodic boundary conditions to the coupled Maxwell - Schrodinger equations over short, resonant wavelength intervals of the interaction. Here, an extended, one-dimensional model of the QFEL interaction is presented in the absence of any such averaging or application of periodic boundary conditions, the absence of the latter allowing electron diffusion processes to be modeled throughout the pulse. The model is used to investigate how both the steady-state (CW) and pulsed regimes of QFEL operation are affected. In the steady-state regime it is found that the electrons are confined to evolve as a 2-level system, similar to the previous QFEL models. In the pulsed regime Coherent Spontaneous Emission (CSE) due to the shape of the electron pulse current distribution is shown to be present in the QFEL regime for the first time. However, unlike the classical case, CSE in the QFEL is damped by the effects of quantum diffusion of the electron wavefunction. Electron recoil from the QFEL interaction can also cause a diffusive drift between the recoiled and non-recoiled parts of the electron pulse wavefunction, effectively removing the recoiled part from the primary electron-radiation interaction.Comment: Submitted to Optics Expres

    Multiple-Purpose Subsonic Naval Aircraft (MPSNA): Multiple Application Propfan Study (MAPS)

    Get PDF
    Study requirements, assumptions and guidelines were identified regarding carrier suitability, aircraft missions, technology availability, and propulsion considerations. Conceptual designs were executed for two missions, a full multimission aircraft and a minimum mission aircraft using three different propulsion systems, the UnDucted Fan (UDF), the Propfan and an advanced Turbofan. Detailed aircraft optimization was completed on those configurations yielding gross weight performance and carrier spot factors. Propfan STOVL conceptual designs were exercised also to show the effects of STOVL on gross weight, spot factor and cost. An advanced technology research plan was generated to identify additional investigation opportunities from an airframe contractors standpoint. Life cycle cost analysis was accomplished yielding a comparison of the UDF and propfan configurations against each other as well as against a turbofan with equivalent state of the art turbo-machinery

    Start to end simulations of the ERL prototype at Daresbury Laboratory

    Get PDF
    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will serve as a research and development facility for the study of beam dynamics and accelerator technology important to the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives of the ERLP are the demonstration of energy recovery and of energy recovery from a beam disrupted by an FEL interaction as supplied by an infrared oscillator system. In this paper we present start-to-end simulations of the ERLP including such an FEL interaction. The beam dynamics in the highbrightness injector, which consists of a DC photocathode Gun and a superconducting booster, have been modelled using the particle tracking code ASTRA. After the booster the particles have been tracked with the code elegant. The 3D code GENESIS 1.3 was used to model the FEL interaction with the electron beam at 35 MeV. A brief summary of impedance and wakefield calculations for the whole machine is also given

    Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser

    Get PDF
    A method to achieve high-brightness self-amplified spontaneous emission (HB-SASE) in the free-electron laser (FEL) is described. The method uses repeated nonequal electron beam delays to delocalize the collective FEL interaction and break the radiation coherence length dependence on the FEL cooperation length. The method requires no external seeding or photon optics and so is applicable at any wavelength or repetition rate. It is demonstrated, using linear theory and numerical simulations, that the radiation coherence length can be increased by approximately 2 orders of magnitude over SASE with a corresponding increase in spectral brightness. Examples are shown of HB-SASE generating transform-limited FEL pulses in the soft x-ray and near transform-limited pulses in the hard x-ray. Such pulses may greatly benefit existing applications and may also open up new areas of scientific research

    An EMA analysis of the effect of increasing word length on consonant production in apraxia of speech: A case study

    Get PDF
    The effect of increasing word length on the articulatory dynamics (i.e. duration, distance, maximum acceleration, maximum deceleration, and maximum velocity) of consonant production in acquired apraxia of speech was investigated using electromagnetic articulography (EMA). Tongue-tip and tongue-back movement of one apraxic patient was recorded using the AG-200 EMA system during word-initial consonant productions in one, two, and three syllable words. Significantly deviant articulatory parameters were recorded for each of the target consonants during one, two, and three syllables words. Word length effects were most evident during the release phase of target consonant productions. The results are discussed with respect to theories of speech motor control as they relate to AOS

    Reversing conditional orderings

    Get PDF
    We analyze some specific aspects concerning conditional orderings and relations among them. To this purpose we define a suitable concept of reversed conditional ordering and prove some related results. In particular we aim to compare the univariate stochastic orderings ≤ st, ≤ hr, and ≤ lr in terms of differences among different notions of conditional orderings. Some applications of our result to the analysis of positive dependence will be detailed. We concentrate attention to the case of a pair of scalar random variables X, Y ​. Suitable extensions to multivariate cases are possible

    Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair

    Get PDF
    Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing

    Design of sub-Angstrom compact free-electron laser source

    Get PDF
    In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated
    corecore