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Abstract

We describe a method for non-degenerate four-wave mixing in a cold sample of 4-level atoms.

An integral part of the four-wave mixing process is a collective instability which spontaneously

generates a periodic density modulation in the cold atomic sample with a period equal to half

of the wavelength of the generated high-frequency optical field. Due to the generation of this

density modulation, phase-matching between the pump and scattered fields is not a necessary

initial condition for this wave-mixing process to occur, rather the density modulation acts to

“self phase-match” the fields during the course of the wave-mixing process. We describe a one-

dimensional model of this process, and suggest a proof-of-principle experiment which would involve

pumping a sample of cold Cs atoms with three infra-red pump fields to produce blue light.
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Many methods of frequency conversion, and in particular frequency upconversion, can

generally be divided into two broad categories. The first is the conventional nonlinear-optical

method of frequency upconversion, which involves generating a high-frequency polarisation

in an optical medium and is reliant on the internal structure of the atoms comprising the

medium. The second involves scattering of light from relativistic electron beams as e.g. in

the free electron laser, where the frequency upshift occurs due to the Doppler upshift of the

scattered radiation, and coherence of the scattered field develops through the generation of a

periodic density modulation of the individual scatterers (electrons) with a period comparable

to the scattered field wavelength. In this letter a new mechanism for the generation of short

wavelength radiation due to four-wave mixing in a cold atomic gas is described, which

incorporates features of both the classes described above. The four-wave mixing process

arises due to a process of collective atomic recoil, during which the four-wave mixing is

accompanied by the formation of an atomic density grating on the short wavelength scale,

similar to the Collective Atomic Recoil Laser (CARL) [1], the atomic analogue of the free-

electron laser. An essential difference between the original (degenerate) CARL process and

the process described in this letter is that in CARL, the scattered field has approximately

the same frequency as the pump. In the process described here, which can be thought

of as non-degenerate CARL, the scattered field and pump fields can have very different

frequencies.

A one-dimensional model which describes the coupled evolution of a collection of 4-

level atoms together with four optical fields is derived. The fields are assumed to be three

strong pump fields with frequencies ωp1, ωp2 and ωp3 and a relatively weak probe field with

frequency ω ≈ ωp1+ωp2+ωp3. For simplicity the optical fields and the atomic centre-of-mass

motion are described classically. Only sum-frequency generation is discussed in this letter,

although the same model can also be used to describe difference frequency generation. For

the purposes of this letter, in order to demonstrate the existence of the four-wave-mixing

process, we consider the scenario depicted in fig. 1, where the atomic sample is enclosed in a

unidirectional ring cavity. Although the use of the cavity is primarily a simplification of the

model allowing the neglect of propagation effects, it is also relevant to many situations of

experimental interest, there having been several recent experimental studies of cold atomic

samples in optical cavities [2, 3, 4, 5]. In cases where the finesse of the cavity is sufficiently

high that the atoms interact effectively with only one mode of the cavity, it is possible to
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FIG. 1: Schematic diagram showing four-wave mixing in a high-finesse unidirectional cavity. The

misalignment of the pump fields from the z-axis is exaggerated for clarity.

neglect the spatial evolution of the scattered field and consider only the temporal evolution

of a single cavity mode amplitude. The configuration is assumed to be similar to that shown

in figure 1, with the short-wavelength cavity mode propagating almost opposite to the pump

fields, which are assumed to be undepleted for simplicity.

The cold atomic sample is assumed to be composed of atoms with a four-level internal

structure. The analysis which follows is not dependant on the specific form of this structure.

The particular form we consider in this paper is shown in figure 2. The main reason for

this choice is that it represents a good model for alkali atoms such as Cs and Na which

are commonly used in cold atom experiments. Transitions |1〉 → |0〉, |2〉 → |1〉, |3〉 → |2〉
and |3〉 → |0〉 are dipole coupled, and the transitions |2〉 → |0〉 and |3〉 → |1〉 are dipole

forbidden. The high-frequency field generated by the four-wave mixing process will have a

frequency ω ≈ ωp1 + ωp2 + ωp3.

FIG. 2: Schematic of atomic energy level configuration
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The axial (z) component of the force on each atom is given by

Fz = d.
∂E

∂z
(1)

where the dipole moment of each atom can be written on terms of the density matrix

elements ρjk as

d = (µ10ρ10 + µ21ρ21 + µ32ρ32 + µ30ρ30 + c.c.)

where µjk = µkj and ρjk = ρ∗
kj . For simplicity it is assumed that the optical field E is

linearly polarised in the direction ŷ and the direction of the dipole matrix elements µjk are

parallel to that of the electric field. Therefore

d = (µ10ρ10 + µ21ρ21 + µ32ρ32 + µ30ρ30 + c.c.)ŷ. (2)

Assuming the density matrix elements and the total optical electric field can be written as

ρ10 = s10e
−i(kp1z+ωp1t)

ρ21 = s21e
−i(kp2z+ωp2t)

ρ32 = s32e
−i(kp3z+ωp3t)

ρ20 = s20e
−i[(kp1+kp2)z+(ωp1+ωp2)t]

ρ31 = s31e
−i[(kp2+kp3)z+(ωp2+ωp3)t]

ρ30 = s30e
−i[(kp1+kp2+kp3)z+(ωp1+ωp2+ωp3)t]

E(z, t) =
[(

Ap1e
−i(kp1z+ωp1t) + Ap2e

−i(kp2z+ωp2t) + Ap3e
−i(kp3z+ωp3t)

)

+ A(z, t)ei(kz−ωt) + c.c.
]

(3)

where kp1 = ωp1/c, kp2 = ωp2/c, kp3 = ωp3/c, k = ω/c and ω ≈ ωp1 + ωp2 + ωp3, then after

substituting for ρ10, ρ21, ρ32 and ρ30 in eq.(2), substituting d and E in eq.(1) and neglecting

fast-varying terms we eventually obtain

Fz = ih̄k
(

Ωs∗30e
2ikz − c.c.

)

(4)

where Ω = µ30A/h̄ and we have assumed non-resonant excitation of the atomic sample by

the pump beams, which are assumed to be much stronger than the high-frequency scattered

field and are far-detuned from resonance. The assumption of non-resonant excitation means

that we can assume negligible population in all but the ground state i.e. ρ00 ≈ 1, ρ11 =

ρ22 = ρ33 ≈ 0, and adiabatically eliminate the coherences, so that for far-detuned pump

fields, s10 ≈ µ10Ap1

h̄∆10

, s21 ≈ µ21Ap2

h̄∆21

and s32 ≈ µ32Ap3

h̄∆32

, where ∆10 = ωp1 − ω10, ∆21 = ωp2 − ω21
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and ∆32 = ωp3 − ω32. The possibility of enhancing the interaction via optimisation of the

coherence s30 will be the subject of a future study.

The evolution of the electromagnetic field is determined by Maxwell’s wave equation

(

∇2 − 1

c2

∂2

∂t2

)

E =
1

ǫ0c2

∂2P

∂t2

where

P =
N
∑

j

djδ(r − rj(t)).

where dj is the dipole moment of the jth atom, j = 1...N , N is the number of atoms, r

is a position vector and rj is the position of the jth atom. Assuming that the pump fields

are undepleted, so that only the high-frequency field with frequency ω evolves, and that

this field is resonant with a single mode of the cavity, then using the definitions of E and

dj in eq.(3) and eq.(2) respectively, assuming ∂2
P

∂t2
≈ −(ω)2P , applying the slowly varying

envelope approximation (SVEA), averaging over an area S in the x−y plane and the cavity

length L, we obtain
dA(t)

dt
=

iωµ30nc

2ǫ0c

〈

s30e
−2ikz

〉

− κA(t) (5)

where a damping term −κA, has been added to represent mirror losses from the cavity,

where κ = c(1−R)
L

is the cavity linewidth and R is the mirror reflectivity.

In the limit of non-resonant excitation, the coherence s30 as a constant quantity s30 =

− Ωp1Ωp2Ωp3

∆10∆20∆30

, where ∆20 = ∆10 + ∆21 and ∆30 = ∆20 + ∆32. The equations describing the

system therefore reduce to

d2θj(t)

dt2
= −ω2µs30

mc2

(

Aeiθj + c.c.
)

(6)

dA(t)

dt
=

µcωns30

2ǫ0c

〈

e−iθ
〉

− κA(t) (7)

where θ = 2kz.

Using the scaling

p̄ =
p

h̄kρ
, t̄ = ωrρt , z̄ = ωrρz/c,

ā = −i

√

2ǫ0

nh̄ωρ
A , ρ =

(

µ2ωns2
30

2ǫ0h̄ω2
r

)1/3

, κ̄ =
κ

ωrρ

where ωr = 2h̄k2

m
, m is the atomic mass, n = N

SL
= ns

L
L

is the atomic sample density with

respect to the cavity volume and ns is the true number density of the atomic sample, then
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the scaled equations become those of the high-gain free electron laser (FEL) [6] (when the

cavity damping term κ → 0) and the (degenerate) CARL [1] i.e.

dθj

dt̄
= p̄j (8)

dp̄j

dt̄
= −

(

āeiθj + c.c.
)

(9)

dā

dt̄
=
〈

e−iθ
〉

− κ̄ā. (10)

The initial temperature, T, of the atoms is represented using a Gaussian distribution of

atomic momenta with half-width σ̄ =
√

2kBT
m

, such that

〈f(θ, p̄)〉 =
1

2π

1√
2πσ̄

∫ 2π

0

∫

∞

−∞

f(θ, p̄)e−
p̄2

2σ̄2 dθ dp̄

and we assume that the finesse of the cavity is sufficiently high that we are operating in the

“good cavity limit”, where κ ≪ 1 and the effect of cavity losses on the interaction dynamics

is negligible. A numerical calculation of the scaled intracavity mode intensity, |ā|2 is shown

in fig. 3 as a function of t̄ for different values of scaled thermal velocity spread, σ̄. The initial

conditions used were |a(t̄ = 0)| = 1×10−5 and uniformly spaced atoms such that
〈

e−iθ
〉

= 0.

It can be seen that maximum growth of the cavity mode (i.e. the high-frequency scattered

field) occurs when σ̄ → 0 i.e. for a perfectly cold beam with zero temperature, as would be

expected. It can also be seen from fig. 3 that the growth rate of the instability decreases with

increasing σ̄. Consequently in the good cavity limit of negligible cavity losses, a system of

FIG. 3: Scaled intracavity intensity (|ā|2) as a function of t̄ for values of σ̄.

initially unbunched atoms illuminated by the pump beams is unstable, leading to exponential
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amplification of both the short wavelength field and an atomic density modulation with a

spatial period λ/2, where λ = 2π/(kp1+kp2+kp3), demonstrating the possibility of amplifying

a short wavelength optical field via a four-wave mixing process which self-phase matches due

to collective atomic recoil. For atomic temperatures sufficiently low that σ̄ ≤ 0.1, the effects

of atomic temperature on the collective instability are negligible.

As an illustrative example we consider the case of a cylindrical sample of N ≈ 106 Cs

atoms illuminated by three infra-red pump lasers being used to produce visible blue light

as illustrated in fig. 1. The atomic energy levels |0〉, |1〉, |2〉 and |3〉 correspond to the

6S1/2, 6P3/2, 7S1/2 and 7P3/2 levels of the Cs atom respectively. The Einstein coefficients

of transitions |1〉 → |0〉, |2〉 → |1〉, |3〉 → |2〉 and |3〉 → |0〉 are A10 = 3.3 × 107s−1,

A21 = 1.2 × 107s−1, A32 = 4.0 × 106s−1 and A30 = 4.2 × 106s−1 respectively [7]. The

sample is assumed to have a length L ≈ 200µ m and radius R ≈ 40µ m, giving an atomic

sample density ns ≈ 1×1018m−3. The cavity is assumed to have length L = 10cm and mirror

transmittivity Tc = 3×10−5, so the atomic density relative to the cavity is consequently n =

nsL/L = 2×1015m−3. The three pump fields have wavelengths λp1 ≈ 852nm, λp2 ≈ 1.47µ m,

λp3 ≈ 2.93µ m and the scattered field will have a wavelength λ ≈ 455nm. The pump

fields are assumed to be sufficiently far-detuned that the approximation of non-resonant

excitation and negligible population in all levels apart from the ground state is valid. For this

example we have chosen ∆10 = 5000A10, ∆21 = 25∆10 and ∆32 = −25∆10. Consequently

∆20 ≈ ∆21 and ∆30 = ∆10. The Rabi frequencies have been chosen for simplicity as

Ωp1 = ∆10/5. Ωp2 = ∆21/5 and Ωp3 = |∆32|/5, which corresponds to pump intensities of

Ip1 = 8.9 × 103W cm−2, Ip2 = 4.3 × 106W cm−2 and Ip3 = 1.6 × 106W cm−2 respectively.

Using these parameters, the parameter ρ ≈ 47 and ωr = 1.8 × 105rad s−1. The recoil

temperature of the atoms is ≈ 1.4µK. The classical treatment of the atomic dynamics in

this letter is strictly valid only for temperatures above the recoil temperature. Assuming

T ≈ 7µK, the corresponding value of the scaled thermal momentum spread is σ̄ ≈ 0.1. From

fig. 3, it can be seen that for this value of σ̄ the behaviour of the system is very close to

that in the cold beam limit, and the effects of thermal spread are almost negligible. For this

example the short-wavelength scattered radiation in the cavity is amplified to an intensity

of 1.3× 103W cm−2 at saturation (39mW cm−2 transmitted from the cavity) after a time of

≈ 1.8µs.

In conventional four-wave mixing [8], the pump and scattered/generated fields are said
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to be phase-matched i.e. the wave vectors of the pump fields and the harmonic field satisfy

∆k = kp1 + kp2 + kp3 − k ≈ 0 (see fig. 4(a)), such that the coherence length Lc = 2π/|∆k|
is much larger than the generated radiation wavelength, λ. For situations where wavevector

FIG. 4: Schematic showing configuration for (a) conventional four-wave mixing (b) four-wave

mixing with self-phase matching

mismatch between the pump and scattered fields is large e.g. as in fig. 1 and fig. 4(b), the

coherence length will be less than the radiation wavelength, Lc < λ, so the amount of high-

frequency radiation generated by conventional four-wave mixing will be negligibly small as it

varies as ∝ (Lc/L)2 [8], where L is the length of the medium which is much greater than the

coherence length, Lc. In the case of four-wave mixing due to recoil however, this is not the

case because the degree of phase matching is proportional to the degree of atomic bunching.

Although initially this is very small, as the collective instability develops the atoms form a

strong density modulation with a spatial period equal to half of the wavelength of the high-

frequency field, which reduces the phase mismatch. The effect of the collective instability due

to recoil is therefore to “self-phase match” the pump fields and the scattered high-frequency

field. Note that a wavevector mismatch, usually undesirable during a conventional four-wave

mixing process, is necessary for self-phase matching via collective atomic recoil, because it

is the physical origin of the force which moves the atoms and initiates the formation of the

atomic density modulation.

In conclusion, it has been shown that a collection of cold four-level atoms illuminated by

three pump laser fields can generate a fourth, short wavelength field via a four-wave mixing

process. The novel feature of the nondegenerate four-wave mixing process considered here

is that it does not require phase matching, but instead relies upon a collective instability, in

which the atoms spontaneously form a periodic density modulation which acts to “self-phase

match” the pump and scattered fields. A possible scheme for a proof of principle experiment
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involving a high-finesse cavity to contain a sample of cold Cs atoms and the scattered, short

wavelength field is described. It is important to note that the phenomenon described in

this paper is not critically dependant on the presence of the optical cavity. The cavity

acts to enhance the atom-field interaction and therefore to relax the restrictions on some

parameters e.g. the atomic temperature necessary in order to successfully demonstrate the

effect in an experiment. It is anticipated that a superradiant or superfluorescent analogue of

the phenomenon described here could occur in a sample of cold atoms in free space, where

the propagation direction of the scattered field is determined by the major axis of the cold

atomic sample. However, based on previous studies of the degenerate CARL process [1, 9],

it is anticipated that sub-recoil temperatures would be necessary for this to occur, and a

consistent study would require a quantum-mechanical description of the atomic motion. It

should also be noted that we have performed a number of simplifying assumptions e.g. non-

resonant excitation, undepleted pump fields, in order to highlight the novel features of the

physical processes described here i.e. non-degenerate wave-mixing with phase matching due

to a collective instability, but it is certainly possible that these may not be the optimum

conditions under which to observe the phenomena described here. Examples of extensions

to the analysis presented in this letter are (i) resonant enhancement of the coherence s30,

which would seem to offer a way of enhancing the collective instability through increasing

the coupling between the atoms and the scattered field (the coupling parameter ρ ∝ s
2/3
30 )

and reducing the pump laser intensities required to observe the instability (ii) the addition of

atomic cooling forces as in [2, 3], which tends to relax the restriction on atomic temperature

needed to observe the collective instability and damps out the oscillatory behaviour of the

interaction after saturation (see fig. 3). Such extended analyses will be necessary to deduce

the conditions for optimum generation of the short-wavelength field. This is an important

issue, as phase matching is the main limiting factor to efficient generation of very short-

wavelength radiation e.g. XUV & X-ray radiation, so the method of frequency conversion

described in this letter could form the basis of new methods for realising such sources.

Another possible application of the four-wave mixing process described here could be to

produce short period density gratings/modulations in atomic media using long-wavelength

light (in the example given here, three infrared lasers produce a density grating with a spatial

period of 228nm).
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