
Reversing Conditional Orderings

Rachele Foschi,∗ Fabio Spizzichino†

Abstract

We analyze some specific aspects concerning conditional orderings and
relations among them. To this purpose we define a suitable concept
of reversed conditional ordering and prove some related results. In
particular we aim to compare the univariate stochastic orderings ≤st,
≤hr, and ≤lr in terms of differences among different notions of con-
ditional orderings. Some applications of our result to the analysis of
positive dependence will be detailed. We concentrate attention to the
case of a pair of scalar random variables X, Y . Suitable extensions to
multivariate cases are possible.

Keywords: Positive dependence, reversed conditional orderings, de-
fault contagion, conditional independence.

1 Introduction

Stochastic orderings between random variables (or random vectors) consti-
tute primary tools for the description and the characterization of concepts
of stochastic dependence. On the one hand the relevant literature in this
direction is very well established (see in particular [17] and the references
contained therein). On the other hand it still continues to offer various sug-
gestions for interesting work.

Here we consider stochastic orderings between (one-dimensional) condi-
tional distributions, also called conditional orderings. We will analyze some
specific aspects concerning such orderings and relations among them.

Specially in a statistical setting, the following problem is of interest: what
can be said about dependence of X w.r.t. Y (where X and Y are random
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variables or random vectors) when we assume that Y is stochastically in-
creasing w.r.t. X in some specified sense? Attention to this topic has been
given several times in the literature under different stand-points or different
languages. One can see in particular the basic paper [7], [19, Chapter 3] and
the recent papers [5, 6]. Related to this theme one can also see [15].

Some detailed aspects of this theme will be considered here for the special
case of two scalar random variables. As a motivating purpose, we aim to
compare the univariate stochastic orderings ≤st, ≤hr, and ≤lr in terms of
differences among notions of conditional orderings.

For scalar random variables X and Y , we consider different conditional
orderings of the form

L (Y |X ∈ I) ≤∗ L (Y |X ∈ I ′) , (1)

where I, I ′ are intervals of different types and ≤∗ stands for ≤st, ≤hr, or
≤lr. In a few words, we can summarize our work by saying that we analyze
implications or equivalences concerning such relations. Along this direction
we will show some simple results that, at the best of our knowledge, have
not been pointed out so far.

A concept of reversed conditional ordering will in particular emerge as
natural from our discussion and our results will point out some symmetries
existing between the mentioned univariate stochastic orderings ≤st, ≤hr, ≤lr

and different types of conditional orderings (where a “type” of ordering can
be defined in terms of the possible choices for the intervals I, I ′ appearing in
(1)). A main result in this direction is Theorem 1.

It is clear that conditional orderings define special notions of positive de-
pendence (see in particular [4] and references cited therein). In the article, we
will analyze positive dependence properties corresponding to the considered
conditional orderings and we will see how results concerning implications
and equivalences between conditional orderings can be translated in terms of
dependence notions.

Then we will point out some direct applications of our results to depen-
dence notions related with conditions of default contagion and to the case of
conditional independence between X and Y .

More in details, the article is organized as follows. In Section 2 we first
introduce some formal concepts needed to give a general definition of rever-
sion of a conditional ordering. Then (Theorem 1) we point out a specific
property, related with conditioning, of the ≤st order. Definitions and results
given in Section 2 will be directly applied in Section 3, where we detail the
specific conditional orderings of our interest and present Theorem 2. In a few
words we show how each conditional ordering of the form (1) is equivalent
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to one of the form

L (X|Y ∈ J) ≤∗̃ L (X|Y ∈ J ′) , (2)

for suitable choice of the stochastic order ≤∗̃ and of the intervals J, J ′.
The equivalence of a conditional ordering of the form (1) or of the form

(2) with a corresponding concept of dependence will be treated in Section
4. Arguments presented therein will directly suggest the definition of a new
positive dependence concept, that is related with the notion of Stochastic In-
creasing and that we denote by SIRL. Section 5 presents two different types
of applications of Theorem 2: concepts of default contagion and cases of con-
ditional independence between X and Y . The latter application adds some
potentially useful insight about positive dependence of conditionally indepen-
dent random variables that are stochastically increasing w.r.t. a conditioning
variable Z. Finally, we present a short discussion with some concluding re-
marks in Section 6. In the Appendix, we recall some notation and basic facts
about stochastic dependence and copulas (see also [8, 13]).

The choice of restricting our analysis to pairs of scalar random variables,
besides allowing us to simplify notation and definitions, is also motivated by
specially relevant symmetries related with reversing conditional orderings.
Our arguments, however, admit suitable generalizations to the multivariate
case.

2 The role of usual stochastic ordering in con-

ditioning

Let X, Y be two real-valued random variables. Let furthermore E,E ′ be
events; L(X), L(X|E), L(Y ), L(Y |E ′) will denote respectively the proba-
bility laws of X, X conditional on E, Y, Y conditional on E ′. As a first
issue in this section, we give a suitably general definition of stochastic mono-
tonicity, of Y w.r.t. X. To this purpose, it is convenient to define an order
on the class I of all the intervals of R+.

Definition 1. For two intervals I, I ′ belonging to I, we set I b I ′ if inf I <
inf I ′ or inf I = inf I ′, sup I ′ < sup I.

The relation b is symmetric, anti-reflexive and transitive and it defines
a total order on I.

Let ≤∗ denote a univariate stochastic order and let A,B be two subclasses
of I. On the basis of Definition 1, we can now give the following definition.
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Definition 2. Y is (≤∗, A, B)-stochastically increasing in X or stochas-
tically increasing w.r.t. X in the sense (≤∗, A, B) if and only if, for any
I ∈ A, I ′ ∈ B, I b I ′,

L(Y |X ∈ I) ≤∗ L(Y |X ∈ I ′).

More shortly, we will also write Y ↑(≤∗, A, B) X.

Remark 1. By Definition 2, we obtain the classical notion of Y stochasti-
cally increasing in X (SI(Y |X), see, e.g., the Appendix Section) by setting

∗ = st, A = B = {(x− ε, x+ ε)|ε > 0, x > ε}.

Definition 3. Let A, B, Ã, B̃ be classes of intervals and ∗, ∗̃ be stochastic
orderings. The relation Y ↑(≤∗, A, B) X is reverted by X ↑(≤∗̃, Ã, B̃) Y if and

only if, for any I ∈ A, I ′ ∈ B, J ∈ Ã, J ′ ∈ B̃,

L(Y |X ∈ I) ≤∗ L(Y |X ∈ I ′) ⇔ L(X|Y ∈ J) ≤∗̃ L(X|Y ∈ J ′).

In this paper, we consider the special cases of Definition 2 obtained by
combining the following choices:

1. ∗ = st,

2. ∗ = hr,

3. ∗ = lr

and

A. L(Y ) ≤∗ L(Y |X > x) ∀x > 0,

B. L(Y |X > x) ≤∗ L(Y |X > x′) ∀x < x′,

C. L(Y |X = x) ≤∗ L(Y |X = x′) ∀x < x′.

By using the notation of Definition 2, we respectively have

A. A = {R+} and B = {(x,+∞)|x > 0},

B. A = B = {(x,+∞)|x > 0},

C. A = B = {(x− ε, x+ ε)|ε > 0, x > ε}.

The following result points out a property of the usual stochastic order
that is relevant in our setting. This result will allow us to find triples
(≤∗, A, B), (≤∗̃, Ã, B̃) satisfying Definition 3.
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Theorem 1. Let A,B,B′ be intervals, with B b B′. Then intervals A′, D,D′

exist, with D b D′ and such that

L(Y |Y ∈ A,X ∈ B) ≤st L(Y |Y ∈ A,X ∈ B′) (3)

is equivalent to

L(X|X ∈ A′, Y ∈ D) ≤st L(X|X ∈ A′, Y ∈ D′). (4)

Proof. By definition of usual stochastic order, inequalities (3), (4) also read
as

P{Y > y|Y ∈ A,X ∈ B} ≤ P{Y > y|Y ∈ A,X ∈ B′} ∀ y ≥ 0, (5)

P{X > x|X ∈ A′, Y ∈ D} ≤ P{X > x|X ∈ A′, Y ∈ D′} ∀ x ≥ 0. (6)

By Bayes’ Theorem, Eq. (6) can be rewritten as

P{X > x,X ∈ A′, Y ∈ D}
P{X ∈ A′, Y ∈ D}

≤ P{X > x,X ∈ A′, Y ∈ D′}
P{X ∈ A′, Y ∈ D′}

and subsequently

P{Y ∈ D|X > x,X ∈ A′}
P{Y ∈ D|X ∈ A′}

≤ P{Y ∈ D′|X > x,X ∈ A′}
P{Y ∈ D′|X ∈ A′}

.

On its turn, Eq. (5) becomes

P{Y > y, Y ∈ A|X ∈ B}
P{Y ∈ A|X ∈ B}

≤ P{Y > y, Y ∈ A|X ∈ B′}
P{Y ∈ A|X ∈ B′}

.

Thus, Eq.’s (5) and (6) are equivalent if and only if, for some x, y > 0,
D = A
D′ = A ∩ (y,+∞)
A′ = B
B′ = A′ ∩ (x,+∞).

(7)

Since A is given, D b D′. In fact, inf D′ = max(y, inf A) ≥ inf A. We notice
that, since intervals are connected sets, inf I = inf I ′ implies I ⊂ I ′ or I ′ ⊂ I.
Hence the condition inf I = inf I ′ implies I ∪ I ′ b I ∩ I ′; therefore

• if y > inf A, A b A ∩ (y,+∞);

• if y ≤ inf A, A ∪ (A ∩ (y,+∞)) b A ∩ (y,+∞), that is, again,
A b A ∩ (y,+∞).
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Remark 2. Theorem 1 implicitly provides a condition for the existence of
the intervals A′, D,D′ and therefore for a conditional order being revertible.
We notice that Eq. (7) is a system of four equations in the three unknowns
A′, D,D′. The last equation allows us to check the existence of solutions for
the system. Non-existence of solutions means that the considered conditional
order is not revertible. When the solution exists, but at least one of the
intervals A′, D,D′ is empty, then the considered conditional order is not
revertible either.

Let A,A′, B,D be intervals as in Theorem 1.

Proposition 1. A b A′ if and only if D b B.

Proof. The claim straightly follows by the definition, given in the proof of
Theorem 1, of the sets A′ and D in terms of A and B.

Theorem 1 will have a basic role for our purposes in the next section. In
this respect, it is useful to recall that the stochastic orderings ≤hr, ≤lr can
be characterized in terms of ≤st (see [17]). More precisely, one has

Proposition 2. L(S) ≤hr L(T ) if and only if, for any t ≥ 0,

L(S − t|S > t) ≤st L(T − t|T > t).

Proposition 3. L(S) ≤lr L(T ) if and only if L(S|S ∈ A) ≤st L(T |T ∈ A)
for any measurable set A.

In Definition 3, the interchange in the role of the variables X, Y corre-
sponds to a change in the stochastic order and in the choice of the condi-
tioning events. We notice that there is a balance between the strength of
the stochastic order and the strength of the conditioning events. Actually,
in view of Propositions 2, 3, Proposition 1 guarantees that, if ∗̃ is stronger
than ∗, then D b B and D′ b B′.

3 Remarkable properties of conditional or-

derings and related inversions

In this section we analyze in details the conditional orderings defined by
the positions 1., 2., 3., A., B., C., mentioned in Section 2. In particular by
applying Theorem 1, we will find, for each entry, the corresponding reversed
ordering.
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By combining A., B., C. with cases 1., 2., 3., we obtain the following
matrices M(Y |X), M(X|Y ):

A B C
1 A1(Y |X) B1(Y |X) C1(Y |X)
2 A2(Y |X) B2(Y |X) C2(Y |X)
3 A3(Y |X) B3(Y |X) C3(Y |X)

(8)

A B C
1 A1(X|Y ) B1(X|Y ) C1(X|Y )
2 A2(X|Y ) B2(X|Y ) C2(X|Y )
3 A3(X|Y ) B3(X|Y ) C3(X|Y )

(9)

Each entry of the two matrices M(Y |X),M(X|Y ) is a property of condi-
tional order. For example, A1(Y |X) means L(Y ) ≤st L(Y |X > x) ∀x > 0.

Remark 3. Heuristically speaking, the conditional orderings appearing in
the matrices become stronger and stronger when reading their entries “from
above to below” or “from left to right”. In view of the chain of implications

≤lr ⇒ ≤hr ⇒ ≤st, (10)

we immediately obtain A3⇒ A2⇒ A1, B3⇒ B2⇒ B1, C3⇒ C2⇒ C1.
On the other hand, the implications C1 ⇒ B1 ⇒ A1, C2 ⇒ B2 ⇒ A2,
C3 ⇒ B3 ⇒ A3 follow from the relation R+ b (x,+∞) b {x} in view of
Theorem 1 and Proposition 1.

In principle the two matrices M(Y |X),M(X|Y ) present 18 = 9 + 9 dif-
ferent properties for the joint law of (X, Y ). Based on the existing literature
(see e.g. [17, 7, 19]), we can guess however the existence of some equivalences
among them. Actually a complete catalogue of equivalences can be estab-
lished between pairs of them in terms of Definition 3 and Theorem 1. More
precisely, we have the following result.

Theorem 2. The matrix M(X|Y ) is the transpose of M(Y |X).

Proof. We apply Theorem 1 to any property corresponding to the entries of
M(Y |X). We provide the detailed proof for the elements in the first column
of M(Y |X) (thus obtaining the first row of M(X|Y )). The other equivalences
can be proven by analogous arguments.
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A1(Y |X) satisfies condition (3) with A = B = R+, B
′ = (x′,+∞),

∀x′ > 0. Eq. (7) in the proof of Theorem 1 allows us to write the equivalent
condition (4) with A′ = D = R+, D

′ = (y,+∞), ∀y > 0. Finally, we see
that B′ = (x′,+∞) satisfies the last condition of the system (7),
B′ = A′ ∩ (x,+∞). Hence, by Theorem 1, A1(Y |X) is equivalent to the
inequality (4), that turns out to be equivalent to A1(X|Y ).

In view of Proposition 2, A2(Y |X) is equivalent to condition (3) with
A = (t,+∞), ∀t ≥ 0; B = R+, B

′ = (x′,+∞), ∀x′ > 0. By Theorem 1,
A2(Y |X) is equivalent to (4) with A′ = R+, D = (t,+∞), ∀t ≥ 0;
D′ = (max(t, y),+∞), ∀y > 0. Since max(t, y) ≥ y, (4) turns out to be
equivalent to B1(X|Y ).

In view of Proposition 3, A3(Y |X) is equivalent to condition (3) with
A = (t − ε, t + ε), ∀ε > 0, t > ε; B = R+, B

′ = (x′,+∞), ∀x′ > 0. By
Theorem 1, A3(Y |X) is equivalent to (4) with A′ = R+,
D = (t − ε, t + ε), ∀ε > 0, t > ε; D′ = (t − ε, t + ε) ∩ (y,+∞), ∀y > 0.
D′ = (max(y, t − ε), t + ε) ⊂ D and therefore D b D′ also holds. In other
words, in the limit for ε going to 0, D′ collapses in a point on the right of
{t}. Therefore (4) turns out to be equivalent to C1(X|Y ).

In view of Theorem 2, the table in (8) also reads

A1(Y |X) B1(Y |X) C1(Y |X)
B1(X|Y ) A2(Y |X) C2(Y |X)
C1(X|Y ) C2(X|Y ) C3(Y |X)

(11)

Remark 4. 1. The hazard rate order ≤hr can be characterized as follows
(see [17]): Y ≥hr X if and only if

GX(t)

GY (t)
is decreasing in t. (12)

Eq. (12) allows us to define ≤hr even if one or both the distributions
to be compared are not absolutely continuous.

2. For what concerns the likelihood ratio order, a characterization not
involving densities can be given as follows: X ≤lr Y if and only if

P{X ∈ A}P{Y ∈ B} ≥ P{X ∈ B}P{Y ∈ A} (13)

for all measurable sets A and B such that A ≤ B, where A ≤ B means
that x ∈ A and y ∈ B imply that x ≤ y.
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All our results and the conditional orderings considered so far do not
require absolute continuity.

In the absolutely continuous case, the proof of some of the equivalences in
Theorem 2 could also have been directly obtained by applying Bayes formula.
In particular, we can for instance argue as follows:

• C2(Y |X) ⇔ L(Y |X = x) ≤hr L(Y |X = x′) ∀x < x′ ⇔

GY (y′|X = x)

GY (y|X = x)
≤ GY (y′|X = x′)

GY (y|X = x′)
∀x < x′, y < y′ ⇔

gX(x′|Y > y)

gX(x|Y > y)
≤ gX(x′|Y > y′)

gX(x|Y > y′)
∀x < x′, y < y′ ⇔

L(X|Y > y) ≤lr L(X|Y > y′) ∀y < y′ ⇔ B3(X|Y );

• A3(Y |X) ⇔ L(Y ) ≤lr L(Y |X > x) ⇔

GX(x|Y = y) ≤ GX(x|Y = y′) ∀y < y′ ⇔

L(X|Y = y) ≤st L(X|Y = y′) ⇔ C1(X|Y );

• B2(Y |X) ⇔ L(Y |X > x) ≤hr L(Y |X > x′) ∀x < x′ ⇔

GY (y′|X > x′)GY (y|X > x) ≥ GY (y|X > x′)GY (y′|X > x) ∀x < x′, y < y′ ⇔

GX(x′|Y > y′)GX(x|Y > y) ≥ GX(x|Y > y′)GX(x′|Y > y) ∀x < x′, y < y′

⇔ L(X|Y > y) ≤hr L(X|Y > y′) ∀y < y′ ⇔ B2(X|Y ).

Remark 5. The properties A1, B2, C3 lie on the main diagonal of the
matrix M(Y |X). Therefore, in view of Theorem 2, they must be symmetric
w.r.t. X, Y , i.e. A1(Y |X) = A1(X|Y ), B2(Y |X) = B2(X|Y ), C3(Y |X) =
C3(X|Y ). In these cases, we notice that the interchange between X, Y does
not require a balancing between a change in the stochastic order and in the
conditioning events.

Remark 6. When X, Y are exchangeable, M(Y |X) = M(X|Y ).
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4 Conditional orderings and dependence

All the entries of the matrices M(Y |X),M(X|Y ) can be seen as dependence
properties for the pair (X, Y ). In some cases the correspondences are well
known or immediately follow by definitions. This is the case for A1, B1,
C1, C3 (see the Appendix and the table in (14) below). This section will be
devoted to analyzing the remaining ones.

The following result is a simple consequence of Bayes formula.

Proposition 4. B2(Y |X) ⇔ (X, Y ) is RCSI.

Proof. By Eq. (12), B2(Y |X), i.e. L(Y |X > x) ≤hr L(Y |X > x′) for any
x < x′, y < y′, can be rewritten as

GY (y′|X > x′)GY (y|X > x) ≥ GY (y|X > x′)GY (y′|X > x)

for any x < x′, y < y′. By applying Bayes formula the inequality

F (x′, y′)F (x, y) ≥ F (x, y′)F (x′, y)

is obtained, that is the definition of F TP2, i.e. (X, Y ) is RCSI (see the
Appendix and [13]).

In view of the above arguments, we can rewrite M(Y |X) in the form:

PQD RTI(Y |X) SI(Y |X)
RTI(X|Y ) RCSI C2(Y |X)
SI(X|Y ) C2(X|Y ) PLRD

(14)

On the main diagonals of M(Y |X) and M(X|Y ), we find the symmetric
dependence properties PQD, RCSI, PLRD.

We aim now at completing the correspondences between dependence
properties and entries of M(Y |X).

Also C2(Y |X), C2(X|Y ) can be interpreted as conditions of stochastic
dependence. However they do not correspond, as far as we know, to any
definition introduced so far in the literature. In this respect we state the
following

Proposition 5. C2(Y |X) holds if and only if Y − t|Y > t is SI in X for
any t > 0.
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Proof. By Eq. (12), the condition C2(Y |X), i.e.

L(Y |X = x) ≤hr L(Y |X = x′),

is equivalent to

GY (y′|X = x′)GY (y|X = x) ≥ GY (y|X = x′)GY (y′|X = x)

for any x < x′, y < y′, that is
GY (y′|X = x)

GY (y|X = x)
is increasing in x. Since y < y′,

we can write y′ = y + t, for t > 0, and thus

GY (y + t|X = x)

GY (y|X = x)
= GY (y + t|X = x, Y > y) ↑ x ∀t > 0. (15)

In view of the above result, it is natural to give the following

Definition 4. Y is Stochastically Increasing in X in the Residual Lifetime
(in short SIRL(Y |X)) if SI(Y − t|Y > t,X) for any t > 0.

The matrix M(Y |X) can be finally rewritten as

PQD RTI(Y |X) SI(Y |X)
RTI(X|Y ) RCSI SIRL(Y |X)
SI(X|Y ) SIRL(X|Y ) PLRD

(16)

Condition SIRL(Y |X) is a stronger dependence property than SI(Y |X).
In particular, the chain of equivalences (10) implies: PLRD⇒ SIRL⇒ RCSI.
Concerning the identification of SIRL with a property of stochastic depen-
dence, it is of interest to note that the following result relates such a property

with the behavior of the survival copula Ĉ(u, v) = F (G
−1

X (u), G
−1

Y (v)) (see
also the Appendix).

Proposition 6. Y is SIRL in X if and only if
∂Ĉ

∂u
(u, v) is TP2.

Proof. The term GY (y + t|X = x, Y > t) can also be rewritten as

P{X = x, Y > y + t}
P{X = x, Y > t}

=
∂Ĉ
∂u

(GX(x), GY (y + t))

∂Ĉ
∂u

(GX(x), GY (t))
.
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Since this function has to be increasing in x, by adopting the change of
variables

u = GX(x), u′ = GX(x′), v = GY (y + t), z = GY (t),

we obtain
∂Ĉ

∂u
(u, v)

∂Ĉ

∂u
(u′, z) ≤ ∂Ĉ

∂u
(u′, v)

∂Ĉ

∂u
(u, z). (17)

Since x < x′ < t < y + t and, therefore, u > u′, z > v, Eq. (17) corresponds

to
∂Ĉ

∂u
(u, v) being TP2.

In view of Proposition 6 and Definition 8 in the Appendix, the condi-
tional orderings treated here can be written as properties of a copula. This
circumstance is not surprising, since conditional orderings are not affected by
strictly increasing (deterministic) transformations, as it happens for copulas.

If the copula is symmetric, in particular in the exchangeable case,
M(Y |X) = M(X|Y ), therefore we have in particular (for both the matrices)

B1 ⇔ A2

B3 ⇔ C2

C1 ⇔ A3

In the case when the copula is Archimedean, we have the further equivalences:

B1 ⇔ B2 (see e.g. [3])

C1 ⇔ C2

as stated by the following proposition.

Proposition 7. Let Ĉ be an Archimedean copula. Then SI ⇒ SIRL.

Proof. Let be Ĉ(u, v) = φ(φ−1(u) + φ−1(v)). Ĉ is SI if and only if, for any

a, x ≥ 0,
φ′(x+ a)

φ′(x)
is increasing w.r.t. x, i.e., for any x < x′,

φ′(x+ a)

φ′(x)
≤ φ′(x′ + a)

φ′(x′)
. (18)

In view of Proposition 6, the thesis consists in
∂Ĉ

∂u
(u, v) being TP2, i.e., for

any u, u′, v, v′ ∈ [0, 1], u < u′, v < v′,

φ′(α′ + β)φ′(α + β′) ≤ φ′(α + β)φ′(α′ + β′), (19)

where α = φ−1(u), α′ = φ−1(u′), β = φ−1(v), β′ = φ−1(v′) and therefore
α′ < α, β′ < β. By choosing x = α′+ β′, x′ = α+ β′, a = β − β′, we obtain
that Eq. (18) implies Eq. (19).
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5 Applications of Theorem 2

The circumstance that each entry of the matrix M(Y |X) is equivalent to
an entry of M(X|Y ) turns out to be of interest in several different contexts.
Some of them will be sketched in what follows.

5.1 Default contagion and dynamic dependence prop-
erties

In several applied models, the following type of conditional ordering can be
of interest:

L(Y |X = x) ≤∗ L(Y |X > x). (20)

It is natural to wonder whether property (20) is different from those appear-
ing in M(Y |X). Actually, such stochastic inequalities are equivalent to the
ones appearing in the column B. of M(Y |X). More precisely we can state

Proposition 8. For ∗ = st, hr, lr, condition (20) is equivalent to

L(Y |X > x) ≤∗ L(Y |X > x′), ∀x < x′.

Proof. • L(Y |X = x) ≤st L(Y |X > x) ⇔

GX(x)

gX(x)
≤ GX(x|Y > y)

gX(x|Y > y)
⇔ L(X) ≤hr L(X|Y > y),

that, in view of Theorem 2, is equivalent to B1(Y |X).

• L(Y |X = x) ≤hr L(Y |X > x)

⇔ GY (y′|X = x)

GY (y|X = x)
≤ GY (y′|X > x)

GY (y|X > x))
, ∀y < y′ ⇔

GX(x|Y > y)

gX(x|Y > y)
≤ GX(x|Y > y′)

gX(x|Y > y′)
, ∀y < y′ ⇔

L(X|Y > y) ≤hr L(X|Y > y′), that is B2(Y |X).

• L(Y |X = x) ≤lr L(Y |X > x)⇔ GX(x|Y = y)

gX(x|Y = y)
≤ GX(x|Y = y′)

gX(x|Y = y′)

⇔ L(X|Y = y) ≤hr L(X|Y = y′), i.e. B3(Y |X).
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We notice that all the three parts of the above proof are based on Bayes
formula and on Theorem 2.

In different frameworks, especially in the case when X, Y are non-negative
random variables with the meaning of failure times, default times or times
to events, it is important to establish whether the following condition holds:

L(Y |X = t, Y > t) ≤∗ L(Y |X > t, Y > t). (21)

The stochastic inequality (21) is a special case of dependence properties of
dynamic type studied in the field of reliability; see in particular [1, 2, 14, 16].
The same inequality is also closely related to the concept of default contagion
introduced in the literature on financial risk; see e.g. [12] and references
therein. Some relations between the inequalities in (20) and in (21) are
made precise by the following result.

Proposition 9. For ∗ = hr, lr, condition (20) implies (21).

Proof. • For ∗ = lr, the implication straightly follows by
[17, Theorem 1.C.6].

• For ∗ = hr, it is a consequence of the implication:

L(S) ≤hr L(T ) ⇒ L(S|S > t) ≤hr L(T |T > t), ∀t ≥ 0.

Propositions 8, 9, applied to the results of the previous section, lead us
to link dependence properties to default contagion properties.

Corollary 1. • SIRL(X|Y ) ⇒

L(Y |X = t, Y > t) ≤lr L(Y |X > t, Y > t);

• SIRL(Y |X) ⇒ L(X|X > t, Y = t) ≤lr L(X|X > t, Y > t);

• (X, Y ) RCSI ⇒ L(Y |X = t, Y > t) ≤hr L(Y |X > t, Y > t) and

L(X|X > t, Y = t) ≤hr L(X|X > t, Y > t).

Remark 7. (X, Y ) RCSI also implies default contagion in the usual stochas-
tic order sense, i.e.

L(Y |X = t, Y > t) ≤st L(Y |X > t, Y > t)

and
L(X|X > t, Y = t) ≤st L(X|X > t, Y > t).

14



5.2 Conditional independence and reversed Markov pro-
cesses

Let X, Y be conditionally independent w.r.t. a random variable Z. It is
well known that, when X and Y are both stochastically increasing w.r.t. Z,
in some suitable sense, then the pair (X, Y ) manifests some corresponding
property of positive dependence. A rich literature has been devoted to this
issue, for the general case of n ≥ 2 conditionally independent variables. See,
in particular, [9, 10, 11, 18, 20].

In this subsection, we show some specific aspects of this topic for the case
of the bivariate dependence notions appearing in the matricesM(Y |X),M(Y |X).

The following definition of transitivity of a dependence property is rele-
vant in the present setting.

Definition 5. Let D be a dependence property. We say that D is transitive
under conditional independence, in short c.i.-transitive, if the conditions:

i) (X,Z) satisfies D,

ii) (Z, Y ) satisfies D,

iii) X, Y conditionally independent given Z

imply that (X, Y ) satisfies D.

For example, the following implication is clear (under the assumption
that X, Y are conditionally independent given Z): if

L (Z|X = x′) ≤st L (Z|X = x′′) for any x′ < x′′

and
L (Y |Z = z′) ≤st L (Y |Z = z′′) for any z′ < z′′,

then
L (Y |X = x′) ≤st L (Y |X = x′′) for any x′ < x′′;

in other words C1(Z|X) and C1(Y |X) imply C1(Y |Z), i.e. SI is c.i.-transitive.
The notions of PQD, RTI and PLRD are also c.i.-transitive. It is also

obvious, by definition of c.i.-transitivity and by Theorem 2, that a property
D is c.i.-transitive if and only if its reversed property D∗ is such.

Proposition 10. Let X, Y be conditionally independent given Z. Then the
following implications hold:

a) if (X,Z) and (Y, Z) are PQD, then (X, Y ) is PQD;
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b) if (X,Z) and (Y, Z) are PLRD, then (X, Y ) is PLRD;

c) if A3(X|Z) and SI(Y |Z) hold, then SI(Y |X);

d) if B3(X|Z) and SIRL(Y |Z) hold, then SIRL(Y |X).

Proof. The proof of a) and b) is immediate, by taking into account Definition
5 and the fact that PQD and PLRD are symmetric. The proof of c) is also
almost obvious. In fact, by Theorem 2, A3(X|Z) is equivalent to C1(Z|X)
i.e. SI(X|Z). Then C1(Y |X) follows by c.i.-transitivity of C1. Similarly for
item d).

Items c) and d) of Proposition 10 are slightly different from other results
given in the literature cited above. In fact, in such results, one considers
random variables T1, ..., Tn that are conditionally independent given Z and
it is typically assumed that one and the same conditional ordering holds for
all the (possibly different) conditional distributions of Tj given Z. Compare
in particular item c) with [9] or [20, p. 138].

Interest of c.i.-transitive dependence properties also arises in a natural
way in the analysis of real-valued Markov processes. Consider a Markov
process in discrete time, X0, X1, ..., with transition kernel p(x|x′), and, for
n = 2, 3, ..., let p(n)(x|x′) be the transition kernel in n steps.

Lemma 1. Let p(x|x′) satisfy a dependence property D. If D is transitive,
then also p(n)(x|x′) satisfies D, for n = 2, 3, ....

Proof. p(2)(x|x′) satisfies D just by Definition 5. For n = 3, 4, ..., the claim
follows by induction. In fact (X0, X2) satisfies D, (X2, X3) satisfies D, and
X0, X3 are conditionally independent w.r.t. X2 and so on.

We obtain the following easy result.

Proposition 11. Let n = 1, 2, ....

a) If (X0, X1) is PQD, then also (Xn, X0) is PQD;

b) if (X0, X1) is PLRD, then also (Xn, X0) is PLRD;

c) if X1 is SI in X0, then (Xn, X0) satisfies A3(X0|Xn);

d) if (X0, X1) is SIRL(X1|X0), then (Xn, X0) is B3(X0|Xn).
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6 Discussion and conclusions

We conclude the article with some comments and final remarks.
Our main results are Theorem 1 and Theorem 2. These results present

advantages both of theoretical and technical type. More precisely, Theorem 2
provides a unified framework for the proofs of the identity between the matrix
M(Y |X) and the transpose of the matrix M(X|Y ). Theorem 1 is a general
result about the usual stochastic order that can be applied to Theorem 2,
by using Propositions 2, 3. We notice that Theorem 1 does not require any
regularity condition on the probability distributions of the involved variables.
In particular it does not rely on absolute continuity, thus making Theorem
2 independent of this assumption as well.

The use of Theorem 1 in the proof of Theorem 2 is made possible by
Propositions 2, 3, which allow us to express ≤lr, ≤hr in terms of ≤st .

Theorem 1 could be similarly applied to conditional orderings involving
other stochastic orders that are reducible to ≤st . As a first instance, we can
refer to the reversed hazard rate order, that can be characterized in terms of
≤st similarly to the hazard rate order. However also other stochastic order-
ings can be linked to ≤st by means of different characterizations: this is the
case, for example, of the mean residual life order, the harmonic mean resid-
ual life order, the convex order, the dispersive order (see [17], in particular
Theorems 2.A.4, 2.B.2, 3.A.4, 3.B.13).

Initially our work has been inspired by the purpose of comparing the
univariate stochastic orderings ≤st, ≤hr, ≤lr in terms of differences among
notions of conditional orderings. In this respect, we actually pointed out
some symmetries that exist between the notions of stochastic orders ≤st,
≤hr, ≤lr on one side and conditional orderings on the other side. Our results
also provide some insight about the concepts of positive dependence. In par-
ticular, by means of Theorem 2, we can explain the superpositions between
different pairs of concepts of positive dependence.

Theorems 1, 2 are also useful to understanding the link between notions
of default contagion and other notions of positive dependence properties (see
Corollary 1).

All our results can be easily extended to a particular case of multivariate
conditioning, i.e. in the case when conditioning events differ each other by
the specification of only one variable, as it happens for example between

E0 = {T1 = t1, ..., Tk = tk, Tk+1 > 0, Tk+2 > 0, Tk+3 > s3, ..., Tn > sn−k},

E = {T1 = t1, ..., Tk = tk, Tk+1 > s1, Tk+2 > 0, Tk+3 > s3, ..., Tn > sn−k}.

In view of transitivity of conditioning, we can read a comparison of the kind
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L(Tk+2|E0) ≤∗ L(Tk+2|E) as

L(Tk+2|E0) ≤∗ L((Tk+2|E0)|Tk+1 > s1)

and trace it back to the bivariate case treated so far, with

X = Tk+1|E0, Y = Tk+2|E0.

Our results can be suitably extended from the bivariate to the multi-
variate case. Provided appropriate “weak” notions of multivariate stochastic
orders are considered, such an extension can be developed along the same
lines of the present article. This will be the subject of some future work.

Appendix

This section is devoted to recalling basic definitions and theorems concerning
stochastic dependence and copulas. For further details, see e.g. [13].

We will consider the following positive dependence properties:

Definition 6. • (X, Y ) is Positive Quadrant Dependent (PQD) if

F (x, y) ≥ GX(x)GY (y);

• Y is Right Tail Increasing in X (RTI(Y |X)) if
F (x, y)

GX(x)
↑ x;

• (X, Y ) is Right Corner Set Increasing (RCSI) if

F (x, y)F (x′, y′) ≥ F (x′, y)F (x, y′)

∀ x ≤ x′, y ≤ y′, i.e. F is Totally Positive of order 2 (TP2).

We will consider here only the “joint” absolutely continuous case, with f
joint density. We consider then also

Definition 7. • Y is Stochastically Increasing in X (SI(Y |X)) if

GY (y|X = x) ↑ x;

• (X, Y ) is Positive Likelihood Ratio Dependent (PLRD) if f is TP2.
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As known, the dependence properties of a joint distribution are actually
properties of its copula only, i.e. they do not involve the margins.

We recall that a copula can be seen as the distribution function of two
r.v.’s U, V , uniformly distributed on [0, 1]. In the specific, we considered

here the survival copula Ĉ(u, v) = F
(
G
−1

X (u), G
−1

Y (v)
)
.

The dependence properties in Definitions 6, 7 can be restated by the
following

Definition 8. • (X, Y ) is PQD if and only if Ĉ is PQD, i.e. if and only
if Ĉ(u, v) ≥ uv;

• RTI(Y |X) if and only if Ĉ is LTD(V |U), i.e. if and only if

Ĉ(u, v)

u
↓ u ∀v;

• (X, Y ) is RCSI if and only if Ĉ is TP2;

• SI(Y |X) if and only if Ĉ is SI(V |U), i.e. if and only if

∂Ĉ(u, v)

∂u
↓ u ∀v;

• (X, Y ) is PLRD if and only if
∂2Ĉ(u, v)

∂u∂v
is TP2.
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