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Abstract: Previous models of the quantum regime of operation of the Free Electron Laser
(QFEL) have performed an averaging and the application of periodic boundary conditions to
the coupled Maxwell – Schrödinger equations over short, resonant wavelength intervals of the
interaction. Here, an extended, one-dimensional model of the QFEL interaction is presented in
the absence of any such averaging or application of periodic boundary conditions, the absence of
the latter allowing electron diffusion processes to be modeled throughout the pulse. The model
is used to investigate how both the steady-state (CW) and pulsed regimes of QFEL operation
are affected. In the steady-state regime it is found that the electrons are confined to evolve as a
2-level system, similar to the previous QFEL models. In the pulsed regime Coherent Spontaneous
Emission (CSE) due to the shape of the electron pulse current distribution is shown to be present
in the QFEL regime for the first time. However, unlike the classical case, CSE in the QFEL is
damped by the effects of quantum diffusion of the electron wavefunction. Electron recoil from
the QFEL interaction can also cause a diffusive drift between the recoiled and non-recoiled
parts of the electron pulse wavefunction, effectively removing the recoiled part from the primary
electron-radiation interaction.
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1. Introduction

The Free-Electron Laser (FEL) is a unique and powerful scientific instrument capable of generating
coherent radiation across a wide range of the electromagnetic spectrum into the hard X-ray [1–4].
The FEL uses a beam of relativistic electrons which is propagated through an undulator, usually
consisting of a sinusoidally varying static magnetic field or possibly a counter-propagating
high intensity coherent laser field. The relativistic electrons, with a mean Lorentz factor of
γ0, are forced by the undulator to oscillate transverse to their direction of propagation and
emit electromagnetic radiation at a resonant wavelength λr = λu(1 + ā2

u)/2γ
2
0 , where λu is the

undulator period and āu ∝ Bu, λu , with Bu the undulator magnetic field strength. The undulator
parameter determines the electron oscillation amplitude [4]. In the case of a laser-undulator [5],
typically of much shorter period λu than that of a permanent magnet undulator, the resonance
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relation is λr = λu(1 + ā2
u)/4γ

2
0 , where now the undulator parameter āu is proportional to the

laser undulator intensity [6].
A collective instability between the oscillating electrons and the radiation they emit can cause

the electrons to bunch along their direction of propagation at the resonant wavelength and to
emit coherently. The increased radiation field further bunches the electrons and closes a positive
feedback loop, resulting in a high gain, exponential amplification of the radiation field and
bunching of the electrons until non-linear over-bunching of the electrons saturates the emission
process.

The original description of the FEL interaction used a quantum mechanical description in the
small gain regime [7]. It was later shown that the exponentially unstable high gain FEL regime
could be described using a purely classical framework [4,8,9] starting from the intrinsic shot-noise
within the electron beam in a process called Self-Amplified Spontaneous Emission (SASE). This
has seen the realization of FELs generating coherent radiation into the hard X-ray without the
need for seed lasers. However, for sufficiently short wavelength scales, the single photon emission
recoil of an electron can be sufficiently large that the discrete nature of photon emission cannot
be neglected [10–14] and a quantum description, at least of the electron dynamics of the FEL
interaction, becomes necessary. Hence, a return has been made to a quantum description of the
FEL, called a QFEL [15–17], which can better describe the generation of very short wavelength
radiation potentially into the gamma ray region of the spectrum. Clearly, such coherent output
would prove a unique tool, e.g. in the study of nuclear processes, and has the potential to open up
many new frontiers across science.

All previous QFEL models have averaged the coupled Maxwell – Schrödinger equations
describing the radiation/electron interaction over short intervals of one resonant wavelength within
the system. Periodic boundary conditions were also applied to the electron wavefunction over the
same interval which inhibits electron diffusion throughout the pulse. These approximations are
also commonly applied in classical models which use the Maxwell – Lorentz equations. However,
in such classical models, effects such as Coherent Spontaneous Emission [18, 19] cannot be
modeled, and radiation emission is restricted to a narrow bandwidth around the defined resonant
frequency. The application of periodic boundary conditions to the electron motion means the
beam current profile on the order of the resonant wavelength is assumed static, so electron
drift between the different regions of the beam is usually neglected. In the quantum regime of
operation, the electrons must - by definition - recoil to energy levels outside the usual classical
FEL bandwidth, and so the electron drift effects due to this recoil may play a more important role
in the QFEL interaction, so requiring a revised and extended QFEL model without averaging or
the application of localized periodic boundary conditions to the electron wavefunction.

Given these considerations, it would seem prudent to investigate the QFEL interaction using
such an extended QFEL model, and this is the primary topic of this paper. Relatively simple
systems, e.g. the absence of electron shot-noise or energy spread, are modeled to allow for a
comparison with, and demonstration of, the differences between the previous and extended QFEL
models. Furthermore, we do not limit the parameters used in the simulations to those currently
achievable in the laboratory, but rather explore, for the first time, the underlying physics of the
extended QFEL model.

2. The extended 1-D QFEL model

To model the semi-classical regime of the FEL [20,21], the classical description of a distribution
of discrete electrons is replaced by a quantum-mechanical description of the electrons via a single
wavefunction, ψ. This electron wavefunction is coupled self-consistently to a scaled classical
radiation field, A. The scaling used is the classical scaling of [22] where the classical FEL
parameter is ρF = γ−1

r (āuωp/4cku)
2/3. Using this semi-classical model in the absence of any

localized periodic boundary conditions, the unaveraged QFEL system can be written in terms of
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the scaled, coupled Schrödinger-Maxwell equations in the 1D limit as [21]:

i
∂ψ(z̄, z̄1)

∂ z̄
= −4

ρ2
F

ρ

∂2ψ(z̄, z̄1)

∂ z̄2
1

− i
ρ

2

[

A(z̄, z̄1)e
i

z̄1
2ρF − c.c

]

ψ(z̄, z̄1), (1)

[

∂

∂ z̄
+

∂

∂ z̄1

]

A(z̄, z̄1) = |ψ(z̄, z̄1)|
2e

−i
z̄1

2ρF + i
δ

ρ
A(z̄, z̄1), (2)

where z̄ = z/lg is the scaled undulator distance in units of the gain length lg = λu/4πρF , and
z̄1 = (z− c β̄z t)/β̄z lc , is a localised coordinate along the electron bunch in units of the cooperation
length, lc = λr/4πρF . The electron energy detuning from resonance is δ = 2mc(γ0 − γr )/(h̄k).
The quantum FEL parameter is defined as:

ρ̄ = 2
(

mcγr

~k

)

ρF, (3)

and is proportional to the ratio between the saturated momentum spread of the electron beam
due to the classical FEL interaction, γrmcρF , and the single photon recoil momentum, ~k. The
value of the quantum FEL parameter ρ̄ governs the transition between the classical (ρ̄ ≫ 1)
and quantum (ρ̄ . 1) regimes of operation [23]. Note that the notation used is that of the
generalised model of [21] which, in addition to the FEL interaction, also describes the Collective
Atomic Recoil Laser interaction [24]. In what follows larger values of the FEL parameter ρF
are used indicating a relatively high gain per undulator period. It is noted that while the usual
Slowly Varying Envelope Approximation (SVEA) [25] would probably be violated, the radiation
envelope approximations used in the derivation of the wave equation Eq. (2), are greatly reduced
in the FEL allowing higher gains to be modeled [26, 27].

The extended QFEL model of Eqs. (1) and (2) is compared with the results of the original
model of [28] by applying periodic boundary conditions to the radiation field A and the electron
wave ψ over one radiation period equal to 4πρF in the z̄1 frame. The initial electron wavefunction
is assumed uniform over z̄1 so that ψ(z̄1, z̄ = 0) = 1 , and a initial weak radiation ‘seed’ field of
A(z̄1, z̄ = 0) = 0.01. A Fourier decomposition can also be applied to the electron wavefunction to
recover the electron momentum states [28]:

cn(z̄) =
1

4πρF

∫ 4πρF

0
ψ(z̄1, z̄)e

in
z̄1

2ρF dz̄1, (4)

where |cn |2 represents the probability that an electron has a momentum differing from its resonant
value by p = n~k.

Figure 1 shows the results of a numerical solution to Eqs. (1) and (2) when these periodic
boundary conditions are applied and with similar parameters to [28] (a small but different
initial field of A0 = 10−2 was used here.) It is seen that electrons initially occupy the n = 0
state. Transition between the n = 0 and the n = −1 states, as the interaction in z̄ develops, is
seen to have excellent agreement with the original QFEL model of [28] where the electron
wavefunction emits and re-absorbs a photon as the interaction progresses. The electron wave
oscillates between these two states as the radiation field grows and decays as they co-propagate
through the undulator. These dynamics have also been observed in previous QFEL models
e.g. [21,28]. This two-level dynamics can also be recovered when applying standard quantum
mechanical treatments [13, 14, 29] to the Hamiltonian representation of co-propagating radiation
and electrons, with a counter-propagating wiggler field in the Bambini-Renieri frame.

3. Pulse propagation effects

The effects upon the QFEL collective instability of the relative propagation of the radiation field
through an electron pulse of finite dimension is now considered using the extended, coupled
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Fig. 1. Steady state evolution as function of scaled propagation distance z̄ through the
undulator of: the scaled radiation intensity |A|2 (top); the electron wave function density |ψ |2

(middle), seen to remain constant due the conservation of electron number; and the electron
momentum state occupation probability |cn |

2 (bottom), for ρ̄ = 0.2, δ = 1 and ρF = 0.05.
The variables plotted are the mean values over an interval in z̄1 of 4πρF , corresponding to
one resonant radiation wavelength over which periodic boundary conditions were applied.
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Fig. 2. The scaled radiation intensity |A|2, electron probability density |ψ |2 and the Fourier
transform |F(ψ)| as a function of z̄1 and scaled frequency ω/ωr for scaled propagation
distances along the undulator of Top: z̄ = 0.63 (1 undulator period); Middle: z̄ = 12.56 (20
undulator periods); Bottom: z̄ = 34.4 (55 undulator periods). Parameters used were: ρ = 0.2,
δ = 1, ρF = 0.05 and le = 16 using an initial uniform seed field of A0 = 0.01.

Maxwell – Schödinger equations of Eqs. (1) and (2). The scaled electron pulse length le, is given
in units of the cooperation length lc , i.e. in units of z̄1, as l̄e = le/lc . Here, the case of a long
electron pulse of many cooperation lengths is investigated in which l̄e ≫ 1.

An electron pulse of scaled length l̄e = 16, FEL parameter ρF = 0.05 and QFEL parameter in
the quantum limit of ρ̄ = 0.2 and with optimum detuning of δ = 1, and a small, uniform initial
radiation seed field of A0 = 0.01 is now considered. An electron pulse with a ‘top-hat’ current
profile is used. This has a discontinuous current at either end of the pulse which, in previous
classical models, has been shown to act as a strong source of Coherent Spontaneous Emission
(CSE) [27]. CSE effects have not previously been investigated in the QFEL regime, requiring
the extended model used here. While top-hat or other current profiles with sufficiently large
current gradients to generate significant CSE may not yet be achievable, progress in this field is
being made [30] and cannot be ruled out in future developments. We note that the top-hat current
profile used here means that, due to the current discontinuities at either ends of the pulse, there
are large electron momentum uncertainties and so a large energy spread in these regions due to
the Heisenberg uncertainty principle [31]. Such energy spreads do not inhibit the generation of
CSE however, as such emission is spontaneous and independent of the FEL interaction [27].

Another effect not previously modeled is how electron recoil may change the electron pulse
structure, and so how it emits radiation, by causing those electrons which have emitted a photon
to drift towards the rear of the electron pulse.

The top plots of Fig. 2 show (left to right) the scaled radiation power |A|2, electron probability
density |ψ |2 and the Fourier transform modulus |F(ψ)| as a function of z̄1 and scaled frequency
ω/ωr , after approximately one undulator period (z̄ ≈ 0.63). The Fourier transform |F(ψ)| gives
the momentum representation of the wavefunction and the population of the electron momentum
states. On emitting a photon, an electron would then shift from ω/ωr = 0, to ω/ωr = −1.
The corresponding plots below show the same variables further into the QFEL interaction at:
z̄ ≈ 12.56 (20 undulator periods) and 34.4 (55 undulator periods) respectively.

Two peaks of radiation power are seen at either end of the electron pulse in Fig. 2 (top). This
is the CSE due to the discontinuous change in current at z̄ = 0. We note that in the classical
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limit of ρ̄ ≫ 1, the classical theory of [27] predicts the peak of these radiation spikes to be
|A|2 = 16ρ2

F
= 0.04. In the quantum limit of Fig. 2, it is seen that these peak values of |A|2

are slightly reduced from this value. This reduction is due to the quantum mechanical diffusive,
second order differential term ∝ ρ2

F
/ρ̄ of Eq. (1) which acts to diffuse and reduce any current

gradients in the electron pulse. This quantum diffusive term is initially very large at the electron
pulse edges, and acts to quickly reduce the large current gradient and so CSE. This effect of
quantum diffusion of the electrons at the pulse edges after only one undulator period is also
visible in the electron probability density |ψ |2. This purely quantum effect cannot be modeled in
a classical model or averaged QFEL models using localized periodic boundary conditions.

After sufficiently large propagation distances the effects of CSE become less significant and
the underlying high gain FEL interaction becomes the dominant gain process, as seen in Fig. 2
(middle) for z̄ ≈ 12.56. A modulation of the electron probability density |ψ |2 is due to the
electron bunching. Notice that the peak of the radiation emission occurs close to the centre of the
electron probability density. It is noted that, in this quantum regime, the larger diffusive process
reduces the electron bunching that may be achieved [23]. A further broadening of the electron
pulse around its edges is also observed. The photon emission by the electrons is also seen to start
populating |F(ψ)| about ω/ωr = −1.

The macroscopic effects of electron energy loss within the pulse, following saturation of the
n = 0 to n = −1 transition, are clearly observed in the plots of Fig. 2 for the greater interaction
length of z̄ = 34.4 (bottom). A significant fraction of the electron probability distribution has lost
momentum due to the recoil of radiation emission and has drifted backwards in phase space to
smaller values of z̄1 with a peak at z̄1 ≈ 25. The electron density and bunching are consequently
reduced for z̄1 & 40. The radiation that has been emitted is propagating in near vacuum away
from the electrons with increasing z̄1. A single pulse is observed with a peak at z̄1 ≈ 61. The
electron recoil is therefore seen to further separate the electron pulse source from the radiation
it emits at a rate greater than that which occurs in the previous quantum models with periodic
boundary conditions, where there is no macroscopic electron transport to smaller values of z̄1 and
only the radiation field propagates forward in z̄1. This increased separation rate of the recoiled
electrons from the FEL interaction, a form of ‘self-cleaning’, may make it possible to further
improve the radiation pulse quality generated in the exponential gain regime.

The electron dynamics of this self-cleaning regime may be better understood from a Husimi
spectrogram of the electron wave function ψ defined as:

H(z̄c, ω) =

∫

+∞

−∞

ψ(z̄1) e−ωz̄1 e
−

(z̄1−z̄c )
2

2σ2
z̄1 dz̄1 (5)

where σz̄1 defines the width of the gaussian function centred at z̄c over which ψ is sampled.
Figure 3 plots the magnitude of a Husimi transform |H(z̄c, ω)| with σz̄1 = 10, for the case where
z̄ = 34.4 of Fig. 2 (bottom). It can be seen that it is those electrons that have emitted one photon
that have dispersed to a position centred about z̄1 ≈ 25 corresponding to the peak of |ψ(z̄1)|

2 in
Fig. 2 (bottom).

A comparison is now made between the extended QFEL model as presented here and the
previous model of [21], which is valid in the limit ρF ≪ 1 and uses the notation t̄ in place of the
z̄ used here. In the previous model, a multiple scaling of the coordinate system is used. For each
position in the pulse z̄1, periodic boundary conditions are applied over a ponderomotive period,
corresponding to a range in z̄1 of 4πρF , and the wave equation is averaged over this interval. In
this model of [21], dispersive effects acting on the electron wave function ψ are confined to evolve
locally within each of the ponderomotive periods modeled and cannot propagate throughout, or
therefore affect, the whole pulse. Consequently, effects such as those described by the solutions
of the extended model of Figs. 2 and 3, cannot be modeled and the general form of the radiation
pulses emitted can be expected to differ between the two models. The differences on increasing
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Fig. 3. A Husimi representation log10 (|H (z̄c, ω)|) of the electron wave functionψ at z̄ = 34.4
for the case of Fig. 2 (bottom). The ‘self cleaning’ process implicit within the extended
QFEL model can be observed. That part of the electron wave function which has emitted
one photon and has a scaled frequency ω/ωr = −1, has drifted behind that part which has
not emitted a photon with ω/ωr = 0. (Note that the range of log10 (|H (z̄c, ω)|) displayed
has been truncated to help contrast the regions of interest.)

Fig. 4. Top: the scaled radiation power |A|2 plotted following saturation at z̄ = 34.4 as a
function of scaled pulse position z̄1 for ρF = 10−3, 10−2 and 0.05. Bottom: plots of the
corresponding electron probability density. For small ρF = 10−3, there is small electron
dispersion and good agreement with previous models. For larger ρF = 10−2 and 0.05,
dispersive (recoil) effects increase, enhancing the drift of electrons to smaller values of z̄1
and away from the emitted radiation. This drift reduces radiation re-absorption and is seen
to generate a ‘cleaner’, slightly higher power radiation pulse.
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ρF are shown in Fig. 4 which used the extended model of Eqs. (1) and (2) to plot the scaled 
radiation power | A|2 and electron probability density |ψ |2 in the saturation regime at z̄ ≈ 34.4, as 
a function of position in the pulse z̄1. (Other parameters have the same values.) For the smaller 
value of ρF = 10−3, the wavefunction of the electron pulse has little dispersion due to the ρ2

F /ρ 
scaling of the dispersive term of (1). It is seen that the main scaled peak power | A|2 

. 10 and 
that the electron pulse emits two smaller, trailing secondary pulses. This is in good agreement 
with the previous model solutions using very similar parameters as shown in Fig. 10 of [21].

Significant differences are observed on increasing ρ F to 10−2 and 0.05 of Fig. 4. The electron 
probability density is seen to have shifted to smaller values of z̄1 due to the electron recoil on 
emission of radiation as shown in Figs. 2 and 3. This drift of the energy depleted part of the 
electron density away from the radiation pulse inhibits re-absorption in a ‘self cleaning’ process, 
where the recoiled electrons are removed by dispersion from the FEL interaction around the 
leading spike, preventing them further inhibiting the FEL interaction. This behaviour is not 
present in the previous model of [21].

4. Conclusion

An extended model of a FEL operating in the quantum regime was presented which neither 
applies localized periodic boundary conditions nor averages the FEL interaction over these 
intervals. This extended QFEL model is the equivalent quantum description of the classical 
model of [27]. Both a Schrödinger wavefunction and momentum-state representation of the 
electrons was used. The extended model reduces to the previous QFEL models in the limit of the 
FEL parameter ρF → 0. Both steady-state operation and the effects of pulse propagation were 
investigated. The latter used quite large, as yet probably experimentally unrealizable, values of 
ρF to demonstrate the principle differences between models. Application of periodic boundary 
conditions to the electron wavefunction and radiation field of the extended model recovered the 
dynamics of the previous QFEL models.

When including pulse propagation effects in the extended QFEL model it was shown that, as 
in classical FEL theory, the quantum description results in CSE from the electron pulse. Like 
the classical FEL regime, this quantum model of CSE depends upon the electron pulse shape 
and is consistent with that previously observed in the classical FEL models. When operating in 
the quantum regime, the CSE emission can be rapidly inhibited by a quantum diffusion of the 
electron wavefunction in regions of high current gradient.

For relatively short electron pulses, the recoil of electrons which have emitted radiation was 
shown to cause the electron pulse structure to change by causing the lower momentum states 
to diffuse towards the rear of the pulse. Such effects are not modeled in the previous QFEL 
models. The effect of this spatial separation of electrons in different momentum states is to 
reduce re-absorption of the radiation in a ‘self-cleaning’ process which results in a better defined 
radiation pulse structure. Of course, these cleansing effects would be reduced in longer electron 
pulses.

It is important to note that the effects described by the unaveraged QFEL model here become 
important only for quite large values of the FEL parameter ρF , or for shorter electron pulses. While 
these values appear not to be realistically achievable using current experimental parameters [6], 
that may change in future developments in a push towards methods of generating coherent 
radiation at ever shorter wavelengths.
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