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An EMA analysis of the effect of increasing word length on
consonant production in apraxia of speech: A case study
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School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland,

Australia

(Received 22 May 2006; accepted 25 August 2006)

Abstract
The effect of increasing word length on the articulatory dynamics (i.e. duration, distance, maximum
acceleration, maximum deceleration, and maximum velocity) of consonant production in acquired
apraxia of speech was investigated using electromagnetic articulography (EMA). Tongue-tip and
tongue-back movement of one apraxic patient was recorded using the AG-200 EMA system during
word-initial consonant productions in one, two, and three syllable words. Significantly deviant
articulatory parameters were recorded for each of the target consonants during one, two, and three
syllables words. Word length effects were most evident during the release phase of target consonant
productions. The results are discussed with respect to theories of speech motor control as they relate
to AOS.
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Introduction

Apraxia of speech (AOS) is a neurogenic speech disorder, most commonly caused by single

left-hemisphere stroke (Duffy, 2005). McNeil, Robin, and Schmidt (1997) defined AOS as

‘‘a phonetic-motoric disorder of speech production caused by inefficiencies in the

translation of a well-formed and filled phonologic frame to previously learned kinematic

parameters assembled for carrying out the intended movement’’ (p. 329). As such,

disturbances in articulation and prosody are typical of AOS (McNeil et al., 1997; McNeil,

Pratt, & Fossett, 2004; Duffy, 2005).

Perceptually-derived characteristics of apraxic speech production include: phoneme

prolongation, sound distortions, syllable segregation, a slow rate of speech, and dysprosody

(Odell, McNeil, Rosenbek, & Hunter, 1990; 1991; Duffy, 2005). Perceptual (Johns &

Darley, 1970; Deal & Darley, 1972) and acoustic (Kent & Rosenbek, 1983; Haley &

Overton, 2001) studies of vowel and consonant production in AOS have established that

multisyllabic words (in contrast to monosyllabic words) are particularly susceptible to

articulatory error.
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Kent and Rosenbek (1983) used spectrographic analysis to investigate vowel and

consonant duration in multisyllabic words and phrases, sentences, and monosyllabic

words, in a group of participants with AOS (n57) and a control group (n>7). The AOS

group exhibited longer consonant durations than the control group for the majority of

consonant productions (e.g. /k-, s-, - -, -dz-, -n-, -m-/; NB: dashes are used to indicate

word position) in multisyllabic words, but for comparatively few consonant productions

(e.g. /s-, -s, -ts/) in monosyllabic words. Similarly, although the apraxic speakers, as a

group, exhibited longer vowel durations for the mono- and multisyllabic utterances, vowel

duration appeared to be substantially longer, compared to the control group, for the

multisyllabic words (Kent & Rosenbek, 1983).

Also using spectrographic analysis, Haley and Overton (2001) investigated word stem

vowel duration in mono-, di-, and trisyllable words. Unlike in Kent and Rosenbek’s (1983)

study, Haley and Overton (2001) included three sets of speech stimuli, each of which

contained three words with the same word stem, but with an increasing number of syllables

(e.g. zip, zipper, zippering). As such, a direct comparison could be made between vowel

duration and the number of syllables, the phonetic environment of the vowel remaining

constant. Haley and Overton (2001) reported significantly longer (i.e. p,.05) vowel

durations for the AOS-aphasia group (n510) for di- and tri-syllable word productions,

compared to a control group (n510); no significant differences were reported for the

monosyllabic words.

Despite reporting significantly longer vowel durations for persons with AOS during

multisyllabic word productions, Haley and Overton (2001), as well as Collins, Rosenbek,

and Wertz (1983), reported a reduction in relative vowel duration in word stem vowels in

words with an increasing number of syllables. Vowel reduction in multisyllabic words is

considered a common phonological phenomenon that occurs in typical speech production

(Lehiste, 1971; Klatt, 1973). Haley and Overton (2001) compared the results of two

different measures of relative vowel duration, one of which was comparable to that used by

Collins et al. (1983). When vowel duration was expressed as a proportion of total word

duration, both Haley and Overton (2001) and Collins et al. (1983) reported a reduction in

word stem vowel duration in words of increasing length. When the word stem vowel

duration of the two and three syllable words were expressed as a proportion of the

monosyllabic word stem vowel duration, however, a slightly different shortening pattern

was observed. While there remained a reduction in relative vowel duration in the

multisyllabic words, it was notably smaller in the AOS group, compared to the control

speakers (Haley & Overton, 2001). The discrepancy in results was attributed to a greater

increase in word duration from monosyllabic to multisyllabic words for persons with AOS.

Haley and Overton (2001) commented that irrespective of whether or not vowel duration

decreases, if word length duration increases, relative vowel duration would automatically

decrease (Haley & Overton, 2001). Nevertheless, Haley and Overton (2001) concluded

that their results were indicative of a preserved phonological distinction, attributing the

abnormal shortening pattern to a deficit at the motoric level of articulatory control.

Accordingly, kinematic investigations of articulatory movement in AOS have revealed

deviant lip movement characteristics. Bose, van Lieshout, and Square (2001) and McNeil

and Adams (1991) reported longer durations during the closing gesture of bilabial

productions (i.e. /p, b/) in multisyllabic stimuli; however, while Bose et al. (2001) also

reported larger lip displacements, McNeil and Adams (1991) reported comparable

articulatory displacements for the AOS speakers and the control group. In addition, Itoh,

Sasanuma, Hirose, Yoshioka, and Ushijima (1980), unlike McNeil and Adams (1991),
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reported reduced lip movement velocities in their participant with AOS. Larger articulatory

displacements, longer closing segment durations, and reductions in peak velocity, could

each contribute to increased phoneme durations in AOS. Itoh et al. (1980), in addition to

reporting reduced movement velocities, identified inconsistency in the timing relationship

between the velum, lip, and tongue during /n/ productions. Acoustic studies of speech

production in AOS have also identified variable timing characteristics in AOS (Square-

Storer & Apeldoorn, 1991; Seddoh, Robin, Sim, Hageman, Moon, & Folkins, 1996). As it

stands, however, no research has investigated the kinematic properties of consonant

production, and articulatory variability, in words of increasing length.

Given that prolonged phoneme durations are realized perceptually as distorted speech

and contribute to a slow rate of speech and prosodic abnormalities (Odell et al., 1990;

McNeil et al., 2004), and that articulatory variability has been reported in AOS (Itoh et al.,

1980; Square-Storer & Apeldoorn, 1991; Seddoh et al., 1996), it was considered essential

that the articulatory kinematics of consonant production in words of increasing length be

investigated. In particular, given that the tongue is considered to be the most important

articulator in speech production (Smith, 1992), the aim of the present study was to use

electromagnetic articulography (EMA) to investigate the articulatory dynamics of tongue-

tip and tongue-back movement during target consonant productions (i.e. /t, s, k) in words

of increasing length in persons with AOS. By doing so, it was expected that the parameter/s

of tongue movement (e.g. distance, duration, velocity, acceleration, deceleration) that are

deviant and contributing to increased consonant durations and articulatory variability in

words with an increasing number of syllables would be identified. It was hypothesized that

the apraxic speaker would exhibit deviant and highly variable duration, distance, velocity,

acceleration, and deceleration values for /t/, /s/, and /k/ during multisyllabic word

productions. The articulatory parameters recorded during the monosyllabic word

productions, however, were expected to be relatively comparable to those recorded for

the control group.

Method

Participants

One female participant (NR) with AOS and co-existing oral apraxia and Broca’s aphasia,

aged 52 years, participated in the study. NR was 11 years post-onset of left-hemisphere

stroke, which involved the deep white matter of the left hemisphere extending from the

frontal to the parietal region, caused by a left internal carotid artery dissection.

NR was diagnosed with mild-moderate AOS, as well as a mild oral apraxia, based on the

assessment results of the Apraxia Battery for Adults-Second Edition (ABA-2; Dabul, 2000)

(see Appendix A). The following diagnostic criteria were also satisfied: slow, syllabic speech

production, effortful, visible, and audible searching articulatory movements with attempts

to self correct, inconsistent errors across repetitions of the same utterance, initiation

difficulties, and dysprosody. NR was diagnosed with Broca’s aphasia based on the

assessment results of the Boston Diagnostic Aphasia Examination (BDAE; Goodglass,

2001) (see Appendix B). NR had no history of a speech or neurological disorder unrelated

to her stroke, nor had she undergone oro-maxillo-facial surgery.

A control group of three non-neurologically impaired participants, matched for age

(range549–54 years; M551.33 years; SD52.52) and gender, also participated in the

study. Participants were all native English speakers, and had no history of, or any form of
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speech and/or neurological disorder. Nil participants had undergone surgery of the lips,

tongue, or jaw.

Assessment procedures

A series of perceptual speech assessments, and an instrumental physiological assessment,

EMA, were used to evaluate articulatory performance in the present study.

Perceptual assessments

A speech sample analysis, the Multiple Word Intelligibility Test (MWIT; Kent, Weismer,

Kent, & Rosenbek, 1989), and the Frenchay Dysarthria Assessment (FDA; Enderby,

1983) were administered to all participants. To obtain the speech sample, participants were

instructed to read ‘‘The Grandfather Passage’’ (Darley, Aronson, & Brown, 1975) at their

usual speaking rate and volume. The speech sample was later analysed independently by

two speech pathologists who were unconnected to the study, according to the articulatory

features (i.e. precision of consonants, length of phonemes, precision of vowels),

intelligibility (i.e. overall intelligibility), and rate (i.e. general rate) sections of the

perceptual rating scale, described by FitzGerald, Murdoch, and Chenery (1987). Two

additional items were added to the rating scale, ‘‘word length’’ and ‘‘length of intersyllabic

pauses’’ (NB: these latter features were rated according to the ‘‘length of phonemes’’

criteria). An equal appearing intervals scale of one to four was used for the articulatory

features and intelligibility sections; one indicated normal precision/length/intelligibility, two

indicated mild disturbances, three indicated moderate disturbances, and four indicated

severe disturbances. For the rate section, a scale of one to seven was used to mark the

severity of disturbances. Four indicated a normal rate of speech, one to three indicated a

slow rate of speech (15severe disturbances; 35mild disturbances), and five to seven

indicated a fast rate of speech (55mild disturbances; 75severe disturbances).

Discrepancies between ratings were discussed among the two speech pathologists, and a

single consensus rating was given to each of the seven parameters analysed. The judge’s

scores never varied by more than one on the rating scale. The MWIT was administered by a

speech pathologist in accordance with the instructions outlined in Kent et al.’s (1989)

article and overall intelligibility was analysed. Likewise, the tongue component of the FDA

was administered by a Speech Pathologist in accordance with the procedures outlined in

the FDA testing manual (Enderby, 1983).

EMA assessment

The Electromagnetic Articulograph AG-200 system (Carstens Medizinelektronik GmbH,

Germany) was used to track and record tongue movement along the midline during speech

production.

Instrumentation and method of measurement. Each participant was required to wear a plastic

helmet that comprised three transmitter coils, positioned in front of the participant’s jaw,

behind their neck, and in front of their forehead, within the mid-sagittal plane. Each of the

transmitter coils produced an alternating magnetic field at different frequencies (range 10–

20 kHz), which, in turn, induced alternating signals in seven receiver coils (approximately

26263 mm in size) attached to the articulators within the midline. The magnitude of the

192 C. J. Bartle et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
4
:
4
0
 
1
2
 
J
u
n
e
 
2
0
0
9



signals induced in a single receiver coil reflected the distance between it and a transmitter

coil (i.e. magnitude of signal inversely proportional to cube of distance from the transmitter

coil). Having been calculated, the location (x-y coordinates) of the receiver coil within the

two-dimensional mid-sagittal plane could be established. The position of each receiver coil

was sampled at a measurement frequency of 200 Hz.

Assessment preparation. Prior to each assessment, the AG-200 system was calibrated

according to the procedures outlined in the AG-200 operating manual. During the EMA

assessment, the participants were seated in a straight-backed chair in a laboratory room.

Receiver coils were attached to the participant’s tongue-tip and tongue-back (1 and 4cm

from the tongue-tip in the mid-sagittal plane, respectively), along the midline of their upper

and lower lips, and under the mental protuberance of the mandible. Receiver coils were

also affixed to the bridge of the nose and to the gingiva above the two upper central incisors,

to be used as reference points throughout the assessment (i.e. they do not move in relation

to the head). The receiver coils were coated in latex (plasty-late), and were affixed to the

articulators using a biologically safe adhesive (Cyano-Vaneer Fast, a cyanoethyl liquid);

tape was used to attach the receiver coils to the bridge of the nose and to the jaw. Once all

but one of the receiver coils were attached, the plastic helmet comprising the three

transmitter coils was lowered from the ceiling via a pulley system. The helmet was

subsequently secured to the participant’s head via a plastic headband. Before attaching a

receiver coil to the tongue-tip, the receiver coil was used to trace the occlusional plane. The

receiver coil was positioned in the T-junction at the end of a custom made T-bar, which

was ran over the participant’s upper teeth, from the molars to the first or second bicuspid,

to obtain the trace.

Recording procedure. The participant’s were initially given approximately five minutes of

speaking time to adjust to speaking with receiver coils on their articulators, after which time

they were instructed to read aloud (or repeat after the researcher) a set of phrases that

contained the alveolar stop consonant /t/, the alveolar fricative /s/, or the velar stop

consonant /k/, in word-initial position in words of increasing length. Each of the target

consonants were embedded between the vowels /v/ and /a/. The speech stimuli used in the

present study consisted of three sets of words, each of which contained two or three words

with the same word stem (i.e. ‘‘a tar’’, ‘‘a target’’, ‘‘a targeting’’; ‘‘a sarge’’, ‘‘a sergeant’’; ‘‘a

car’’, ‘‘a carpet’’, ‘‘a carpenter’’). Each of these phrases was randomly repeated seven times

within a larger list of phrases. The participants were instructed to read aloud (or repeat after

the researcher) the phrases at a habitual rate and loudness level. To ensure that reading

difficulties did not influence the results, the researcher modelled each of the phrases prior

to the assessment. While the participants read aloud (or repeated after the researcher) the

phrases, their tongue-tip and tongue-back movements were recorded. To record the

acoustic signals during the assessment session, a lapel microphone which was connected to

the AG200 EMA system was attached to the participant’s helmet (sampling rate516 Hz).

The preparation and recording procedures took approximately 40 minutes for each

participant.

Analysis procedures

Prior to data analysis, the Tailor program (Carstens Medizinelektronik GmbH, Germany)

was used to modify the kinematic data recorded by the AG-200 system. Data modification
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involved: filtering the reference (Filter 40, cut-off58 Hz) and data (Filter 160, cut-

off532 Hz) channels; dynamic correction, to correct for any head movement that may have

occurred in relation to the helmet; and the rotation of the movement data within the x-y

coordinate system (i.e. occlusional plane rotated so that it was parallel to the x-axis) to

make certain that the orientation of kinematic data was consistent between the participants.

Kinematic parameter analysis

The participants tongue-tip and tongue-back movements were tracked and recorded while

they repeated the /t/, /s/, and /k/ sounds in word stem initial position in words with an

increasing number of syllables. The acoustic trace produced by Emalyse (Carstens

Medizinelektronik GmbH, Germany) was initially used to isolate the target sounds /t/, /s/,

and /k/, after which the y-displacement, velocity, and acceleration profiles created by

Emalyse (Carstens Medizinelektronik GmbH, Germany) were used to calculate a number

of kinematic parameters during the approach (i.e. the tongue approaching the palate),

closure (i.e. the tongue held at the palate), and release (i.e. the tongue moving downward

from the palate) phases of the target consonant productions. The kinematic parameters

analysed included maximum velocity (mm/s), and maximum acceleration and deceleration

(m/s2) of the principal receiver coil (i.e. that coil attached to the primary articulator

involved in consonant production), and the duration (ms) of the approach, closure, and

release phases of target consonant productions (see Figure 1). Custom written scripts in

Matlab# (version 6.5.1, The Math-Works Inc., 2004) were used to calculate the distance

(mm) travelled by the principal receiver coil during the approach, closure, and release

phases of target consonant productions.

The values obtained for the aforementioned kinematic parameters were averaged across

five of the seven repetitions of each target consonant in the one, two, and three syllable

words; the five most typical movement profiles were chosen for analysis. For NR,

productions were eliminated from analysis if the approach phase of the target consonant

production could not be isolated. For example, NR, on occasion, preceded her utterance

with a silent articulatory starter. If her tongue did not assume a neutral position between

her silent articulatory starter and actual consonant production, the kinematic values

obtained for the approach phase of the target consonant production may have failed to

represent full articulatory movement.

Following the analysis of each target consonant, the acoustic trace produced by Emalyse

(Carstens Medizinelektronik GmbH, Germany) was used to isolate, and calculate the total

duration (ms) of each target word. In addition, the mean consonant release phase duration

values recorded for the target consonants during multisyllabic word productions were

expressed as a function of those recorded for the target consonants during monosyllabic

word productions, to determine relative release phase duration values.

Perceptual analysis of EMA words

Each of the EMA target words chosen for kinematic analysis were analysed by one of the

researchers according to the rate (i.e. general rate of whole phrase), articulatory features

(i.e. precision of consonants, length of phonemes), and intelligibility (i.e. overall

intelligibility) sections of the perceptual rating scale described by FitzGerald et al.

(1987). As with ‘‘The Grandfather Passage’’, two additional items (i.e. ‘‘[target] word

length’’ and ‘‘length of intersyllabic pauses’’) were included. These latter two items were
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rated according to the ‘‘length of phonemes’’ criteria. Equal-appearing intervals scales, like

those used during the speech sample analyses, were used to rate each of the aforementioned

sections (see Method, Perceptual assessments). A second speech pathologist who was

unconnected to the study rated a sample of 40% of the EMA target words to obtain an

inter-judge reliability measure using Spearman’s rho (rs) correlations. Inter-judge reliability

was calculated for general rate, precision of consonants, length of phonemes, overall

intelligibility, word length, and length of intersyllabic pauses, and the median correlation

was .795 (range5.701–.924). The results indicated an acceptable degree of inter-judge

reliability. To determine the degree of intra-judge reliability, each of the parameters

recorded for a sample of 40% of the EMA stimuli was re-rated by Judge 1. The median

Figure 1. Example y-displacement, velocity, and acceleration/deceleration profiles for the approach, closure, and

release phases of /s/, displaying start of approach phase (T1); end of approach phase/start of closure phase (T2);

end of closure phase / start of release phase (T3); end of release phase (T4); maximum velocity (a), maximum

acceleration (b), and maximum deceleration (c) of approach phase; maximum velocity (d), maximum acceleration

(e), and maximum deceleration (f) of release phase; duration of approach phase [56(T2–T1)], closure phase

[56(T3–T2)], and release phase [56(T4–T3)], given a sampling rate of 200 Hz.
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correlation was .861 (range5.701–.927). The perceptual ratings obtained for NR during

the EMA assessment were related to her articulatory kinematic results.

Results

Perceptual assessment results

Analysis of the speech samples obtained from ‘‘The Grandfather Passage’’ readings

revealed perceptually clear speech for the control participants. Precision of consonants,

length of phonemes, precision of vowels, and overall intelligibility were judged to be within

normal limits for each of the control participants. One control participant presented with an

appropriate general rate of speech; however, two control participants exhibited borderline

appropriate general rate and just noticeably rapid rate of speech.

NR was unable to read or repeat ‘‘The Grandfather Passage’’ after the researcher as her

speech output was largely limited to one, two, or three word utterances. Accordingly, a

spontaneous speech sample, as well as her response to a picture description task (i.e. the

‘‘Cookie Theft’’ picture) was rated. NR exhibited a moderately slow rate of speech, slight

vowel and consonant imprecision, slightly prolonged length of phonemes, mild to

moderately prolonged length of intersyllabic pauses and word length, and normal

intelligibility. NR’s description of the ‘‘Cookie Theft’’ picture has been transcribed below:

Falling over. Um. Um. Falling. Chairs. Um. Cups. Two. Two plates. Um. Woman. Falling over.

Crashing. Jar. Soap. Falling over.

Each of the control participants was judged to be 100% intelligible on the MWIT. NR,

however, presented with 95.7% word intelligibility. NR substituted ‘‘write’’ with ‘‘read’’,

‘‘pat’’ with ‘‘hat’’, and ‘‘slip’’ with ‘‘clip’’. The following errors were also noted: ‘‘ache’’

was substituted with /eIkt/, and ‘‘wax’’ was substituted with /weks/ (NB: these errors did not

influence her word intelligibility).

According to the tongue component of the FDA, no disturbances in tongue function

were exhibited by two of the three control participants. One control participant, however,

exhibited mild tongue disturbances at rest (i.e. her tongue occasionally deviated to the right

or left side at rest) and moderate disturbances in tongue elevation (i.e. had difficulty

coordinating the upward and downward tongue movements). NR exhibited mild or no

disturbances in tongue function, with the exception of tongue elevation. NR was unable to

coordinate the upward and downward movements of her tongue during this latter task.

Slight incoordination was also observed during the alternate tongue movement task.

Perceptual analysis of EMA words

The mean perceptual ratings of each of the target stimuli for the control group and NR are

presented in Table I. The control group, on average, exhibited normal or near-normal

mean perceptual ratings for each of the target consonants during mono- and multisyllabic

word productions. In contrast, NR exhibited a mild-moderate slow rate of speech during

her production of each of the EMA phrases (i.e. often inserted a pause between the ‘‘a’’ and

the target word; e.g. ‘‘a … tar’’). NR’s target consonants were of relatively normal

precision, as was her length of /t/ and /k/ phonemes. NR’s /s/ phonemes were mildly

prolonged. Inter-syllabic pause length was relatively normal for NR’s /t/ and /k/-initial two

syllable stimuli, and mild-moderately prolonged for NR’s /t/ and /k/-initial three syllable

196 C. J. Bartle et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
4
:
4
0
 
1
2
 
J
u
n
e
 
2
0
0
9



Table I. Mean (and standard deviation) perceptual ratings of the EMA stimuli for the control group (CG) and NR.

Stimuli

General rate

Precision of

consonants Length of phonemes

Length of inter-

syllabic pause Word length Overall intelligibility

CG NR CG NR CG NR CG NR CG NR CG NR

tar 3.67 (.49) 2.40 (.55) 1.00 (.00) 1.20 (.45) 1.00 (.00) 1.00 (.00) N/A N/A 1.13 (.35) 1.40 (.55) 1.00 (1.00) 1.20 (.45)

target 3.67 (.49) 2.60 (.55) 1.00 (.00) 1.20 (.45) 1.00 (.00) 1.60 (.55) 1.00 (.00) 1.40 (.55) 1.00 (.00) 1.40 (.55) 1.00 (.00) 1.20 (.45)

targeting 3.80 (.41) 2.60 (.55) 1.00 (.00) 1.40 (.55) 1.00 (.00) 1.20 (.45) 1.00 (.00) 2.60 (.55) 1.00 (.00) 2.60 (.55) 1.13 (.35) 2.20 (.84)

sarge 3.67 (.49) 2.40 (.55) 1.00 (.00) 1.20 (.45) 1.27 (.46) 1.80 (.45) N/A N/A 1.27 (.46) 1.20 (.45) 1.00 (.00) 1.40 (.55)

sergeant 3.80 (.41) 2.60 (.55) 1.00 (.00) 1.20 (.45) 1.20 (.41) 1.80 (.45) 1.00 (.00) 2.00 (.00) 1.00 (.00) 2.00 (.00) 1.00 (.00) 1.40 (.55)

car 3.80 (.41) 2.80 (.45) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) N/A N/A 1.27 (.46) 1.00 (.00) 1.00 (.00) 1.00 (.00)

carpet 3.87 (.35) 3.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.40 (.55) 1.00 (.00) 1.40 (.55) 1.00 (.00) 1.00 (.00)

carpenter 3.67 (.49) 3.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 2.20 (.45) 1.00 (.00) 2.20 (.45) 1.00 (.00) 2.00 (.00)

Note: For ‘general rate’ 45normal, 35mild deviation, 25moderate deviation, 15severe deviation; for all other parameters, 15normal, 25mild deviation, 35moderate

deviation, 45severe deviation.
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stimuli. Inter-syllabic pause length was mildly prolonged during NR’s /s/-initial two syllable

word stimuli. Likewise, word length was of normal length, or mildly prolonged for NR’s

one and two syllable word stimuli, and mild-moderately prolonged for NR’s three syllable

word stimuli. NR presented with normal, or mildly reduced speech intelligibility during her

production of each of the EMA phrases.

EMA results

The mean kinematic parameter values obtained for the control participants’ (n53) and NR

during the approach, closure, and release phases of /t/, /s/, and /k/ in mono-, di- and

trisyllable words, as well as their corresponding mean coefficient of variance (CV) values,

are presented in tables two through to six. The mean kinematic values and mean CV values

calculated for NR were considered to be statistically significant if they were greater than

two standard deviations above or below the mean of the control group.

Approach phase

Articulatory dynamics. Significantly greater mean duration values were recorded for NR

during the approach phases of /t/, /s/, and /k/ during one, two, and three syllable word

productions (see Table II). On the contrary, the mean distance travelled by NR’s tongue

was only significantly greater during the approach phase of /t/ during ‘‘a target’’ repetitions

(see Table II). Significantly reduced mean maximum acceleration values were recorded for

NR during the approach phase of /t/ during mono- and multisyllabic word repetitions;

however, with the exception of /k/ during ‘‘a carpenter’’ repetitions, the mean maximum

acceleration values obtained for NR during the approach phases of /s/ and /k/ appeared to

be relatively comparable to those of the control group (see Table II). The mean maximum

deceleration values obtained for /t/, /s/, and /k/ during monosyllabic word productions and

for /t/ and /k/ during three syllable word productions, were significantly reduced for NR (see

Table II). Likewise, the mean maximum velocity values that were obtained for /t/ during

one and three syllable word productions and for /k/ during two syllable word productions

were significantly reduced (see Table II).

Articulatory variability. NR exhibited significantly more variable mean duration values for

/s/, /t/, and /k/ during one, two, and three syllable word productions, respectively (see

Table III). In contrast, NR exhibited relatively comparable CV values to those of the

control group for distance, with the exception of that recorded for /k/, which was

significantly more variable during ‘‘a carpet’’ repetitions (see Table III). The mean

maximum acceleration and mean maximum deceleration values recorded during the

approach phase of /t/ during three syllable word productions and during the approach

phase of /k/ during one and two syllable word productions were significantly more variable

for NR (see Table III). Mean maximum velocity values, however, appeared to be

significantly more variable during the approach phase of /s/ during ‘‘a sarge’’ repetitions

and during the approach phase of /k/ during one, two, and three syllable word productions

(see Table III).

Closure phase

Articulatory kinematics. Significantly greater mean duration values were recorded for NR

during the closure phases of /t/ and /s/ during mono- and multisyllabic word productions

198 C. J. Bartle et al.
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Table II. Mean (and standard deviation) kinematic parameter values for the control participants’ (n53) and NR during the approach phases of /t/, /s/, and /k/ in one, two,

and three syllable words.

Target

Duration (ms) Distance (mm) Acceleration (m/s2) Deceleration (m/s2) Velocity (mm/s)

CG

(SD)

NR

(SD) DIFF

CG

(SD)

NR

(SD) DIFF

CG

(SD)

NR

(SD) DIFF

CG

(SD)

NR

(SD) DIFF

CG

(SD)

NR

(SD) DIFF

/t/ tar 149.33

(47.58)

311.00

(48.40)

+3.40* 13.27

(3.21)

17.75

(3.72)

+1.40 21.65

(6.22)

5.64

(1.64)

22.57* 26.69

(8.54)

6.48

(2.22)

22.37* 204.49

(48.83)

105.92

(28.80)

22.02*

target 174.67

(58.29)

448.00

(111.72)

+4.69* 15.60

(3.80)

24.80

(2.01)

+2.42* 24.57

(8.16)

6.34

(1.78)

22.23* 28.94

(10.04)

9.10

(3.57)

21.98 228.52

(58.02)

121.48

(23.58)

21.85

targeting 148.00

(42.17)

351.25

(33.80)

+4.82* 13.65

(3.74)

20.85

(3.94)

+1.93 23.44

(6.45)

6.99

(3.45)

22.55* 30.24

(7.00)

8.42

(3.42)

23.12* 221.33

(47.02)

114.75

(22.30)

22.27*

/s/ sarge 168.67

(52.32)

472.50

(148.22)

+5.81* 9.23

(4.26)

15.98

(2.93)

+1.58 8.94

(2.93)

4.97

(1.40)

21.35 9.22

(2.29)

3.94

(0.82)

22.31* 97.96

(25.98)

67.25

(17.97)

21.18

sergeant 181.00

(42.05)

296.00

(37.15)

+2.74* 10.31

(3.12)

13.37

(2.46)

+0.98 9.93

(5.00)

4.71

(1.42)

21.04 11.82

(4.47)

6.13

(2.28)

21.27 115.85

(33.06)

83.60

(18.98)

20.98

/k/ car 132.00

(44.91)

276.00

(20.43)

+3.21* 13.04

(4.71)

18.07

(2.47)

+1.07 22.60

(6.21)

11.37

(3.37)

21.81 22.48

(5.24)

10.72

(3.53)

22.24* 196.29

(44.46)

135.88

(28.92)

21.36

carpet 133.33

(44.51)

264.00

(22.75)

+2.94* 11.58

(3.22)

15.94

(2.55)

+1.35 19.62

(4.56)

10.56

(3.97)

21.99 19.38

(5.02)

11.88

(5.82)

21.49 171.95

(14.43)

135.72

(28.82)

22.51*

carpenter 129.33

(35.70)

435.00

(122.37)

+8.56* 12.60

(5.05)

19.98

(2.52)

+1.46 22.29

(4.72)

7.91

(1.75)

23.05* 20.17

(3.42)

7.31

(1.76)

23.76* 191.64

(44.73)

110.16

(35.75)

21.82

Note: CG5control group; NR5participant with AOS and Broca’s aphasia; DIFF5difference, expressed in terms of the number of standard deviations above (+) or below

(–) the control group mean; *5significantly different from the control group mean (i.e. DIFF.2 SDs).
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Table III. Mean (and standard deviation) coefficient of variance (CV) values for the control participants’ (n53) and NR during the approach phases of /t/, /s/, and /k/ in

one, two, and three syllable words.

Target

Duration (ms) Distance (mm) Acceleration (m/s2) Deceleration (m/s2) Velocity (mm/s)

CG

(SD) NR DIFF

CG

(SD) NR DIFF

CG

(SD) NR DIFF

CG

(SD) NR DIFF

CG

(SD) N DIFF

/t/ tar .180

(.086)

.156 2.28 .178

(.066)

.209 +.47 .217

(.125)

.291 +.59 .179

(.201)

.343 +.82 .119

(.093)

.272 +1.65

target .143

(.037)

.263 +3.24* .176

(.077)

.081 21.23 .203

(.118)

.281 +.66 .201

(.135)

.393 +1.42 .155

(.086)

.194 +.45

targeting .156

(.057)

.096 21.05 .216

(.072)

.189 2.38 .192

(.020)

.494 +15.10* .144

(.047)

.406 +5.57* .125

(.067)

.194 +1.03

/s/ sarge .131

(.074)

.314 +2.47* .147

(.027)

.183 +1.33 .166

(.093)

.282 +1.25 .204

(.108)

.208 +.04 .143

(.057)

.267 +2.18*

sergeant .116

(.006)

.126 +1.67 .176

(.034)

.184 +.24 .201

(.119)

.302 +.85 .270

(.059)

.372 +1.73 .191

(.034)

.227 +1.06

/k/ car .152

(.052)

.074 21.50 .140

(.054)

.137 2.056 .152

(.032)

.296 +4.50* .120

(.042)

.329 +4.98* .103

(.038)

.213 +2.89*

carpet .153

(.050)

.086 21.35 .107

(.009)

.160 +5.89* .137

(.060)

.376 +3.98* .241

(.086)

.490 +2.90* .084

(.031)

.212 +4.13*

carpenter .105

(.068)

.281 +2.59* .189

(.054)

.126 21.17 .134

(.077)

.221 +1.13 .168

(.082)

.241 +.89 .140

(.039)

.325 +4.74*

Note: CG5control group; NR5participant with AOS and Broca’s aphasia; DIFF5difference, expressed in terms of the number of standard deviations above (+) or

below (–) the control group mean; +(x)5an increase in variability; 2(x)5a decrease in variability; *5significantly different from the control group mean (i.e. DIFF.2

SDs).
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(see Table IV). Similarly, significantly greater mean distance values were recorded for NR

during the closure phase of /t/ during one and three syllable word productions and during

the closure phase of /s/ during two syllable word productions (see Table IV). Significance

levels could not be ascertained for duration or distance during the closure phase of /k/, or

for distance during the closure phase of /t/ during two syllable word productions, as mean

duration and mean distance SD values for the control group were zero (see Table IV).

Articulatory variability. The degree of variability exhibited by NR for duration and distance

during the closure phases of /t/ and /s/ was not significantly different to that recorded for the

control group during mono- and multisyllabic word productions (see Table IV).

Significance levels could not be obtained for the degree of variability exhibited by NR

for duration or distance during the closure phase of /k/ productions, or for distance during

the closure phase of /t/ during two syllable word productions, as the control group’s CV and

standard deviation values were zero (see Table IV).

Release phase

Articulatory kinematics. No significant results were recorded for NR during the release

phases of /t/, /s/, and /k/ during the monosyllabic word productions (see Table V). In

contrast, significantly greater mean duration values were recorded for NR during the

release phase of /t/ during two and three syllable word productions and during the release

phase of /s/ during two syllable word productions (see Table V). Significantly greater mean

distance values, however, were recorded during the release phase of /t/ during ‘‘a target’’

repetitions and during the release phase of /k/ during two and three syllable word

productions (see Table V). A significantly reduced mean maximum acceleration value was

recorded for NR during the release phase of /s/ during ‘‘a sarge’’ repetitions. In contrast, a

significantly greater mean maximum acceleration value was recorded during the release

phase of /k/ during ‘‘a carpet’’ repetitions (see Table V). With the exception of the mean

maximum deceleration value recorded for NR during the release phase of /k/ during two

syllable word productions, NR appeared to exhibit relatively comparable mean maximum

deceleration values to the control group during the release phases of /t/, /s/, and /k/ during

multisyllabic word productions (see Table V). Mean maximum velocity values were

significantly greater for NR during the release phase of /k/ during two and three syllable

word productions (see Table V).

Articulatory variability. Significantly more variable mean duration values were recorded for

NR during the release phase of /s/ during one and two syllable word productions, and

during the release phase of /k/ during two and three syllable word productions (see

Table VI). Mean distance values were significantly more variable for NR during the release

phases of /k/ and /t/ during one and two syllable word productions, respectively (see

Table VI). Mean maximum acceleration and mean maximum deceleration values, however,

appeared to be significantly more variable during the release phase of /s/ during ‘‘a sarge’’

repetitions and during the release phase of /k/ during two and three syllable word

productions; the mean maximum deceleration value recorded during the release phase of /t/

during ‘‘a targeting’’ repetitions was also significantly more variable for NR compared to

the control group (see Table VI). NR exhibited relatively comparable CV values to those

of the control group for mean maximum velocity for each of the target sounds during

Effect of increasing word length on articulation in AOS 201
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Table IV. Mean (and standard deviation) duration and distance values and mean (and standard deviation) coefficient of variance (CV) values for the control participants’

(n53) and NR during the closure phases of /t/, /s/, and /k/ in one, two, and three syllable words.

Target

Duration (ms) Distance (mm)

CONTROL GROUP NR DIFF CONTROL GROUP NR DIFF

Value (SD) CV (SD) Value (SD) CV Value CV Value (SD) CV (SD) Value (SD) CV Value CV

/t/ tar 10.33 (27.29) .457 (.791) 393.00 (537.57) 1.37 +14.02* +1.15 .28 (.74) .460 (.797) 4.20 (5.85) 1.39 +5.31* +1.17

target 4.00 (11.21) .497 (.861) 440.00 (415.30) .944 +38.89* +.52 .00 (.00) .00 (.00) 6.85 (6.98) 1.02 – –

targeting 20.00 (31.11) .109 (.190) 285.00 (83.67) .294 +8.52* +.97 .47 (.76) .150 (.260) 3.60 (1.66) .461 +4.12* +1.20

/s/ sarge 79.00 (63.90) .491 (.382) 315.00 (141.11) .448 +3.69* 2.11 1.11 (1.24) .648 (.329) 2.82 (1.27) .450 +1.38 2.60

sergeant 51.67 (66.32) .513 (.761) 290.00 (189.97) .655 +3.59* +.19 .74 (1.10) .594 (.694) 5.89 (5.52) .937 +4.68* +.49

/k/ car .00 (.00) .00 (.00) 70.00 (96.76) 1.38 – – .00 (.00) .00 (.00) .74 (.92) 1.24 – –

carpet .00 (.00) .00 (.00) 206.00 (94.57) .459 – – .00 (.00) .00 (.00) 1.73 (.67) .387 – –

carpenter .00 (.00) .00 (.00) 152.00 (90.94) .598 – – .00 (.00) .00 (.00) 1.63 (1.25) .767 – –

NR5participant with AOS and Broca’s aphasia; DIFF5difference, expressed in terms of the number of standard deviations above (+) or below (–) the control group

mean; *5significantly different from the control group mean (i.e. DIFF.2 SDs).
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Table V. Mean (and standard deviation) kinematic parameter values for the control participants’ (n53) and NR during the release phases of /t/, /s/, and /k/ in one, two,

and three syllable words.

Target

Duration (ms) Distance (mm) Acceleration (m/s2) Deceleration (m/s2) Velocity (mm/s)

CG

(SD)

NR

(SD) DIFF

CG

(SD)

NR

(SD) DIFF

CG

(SD)

NR

(SD) DIFF

CG

(SD)

NR

(SD) DIFF

CG

(SD)

NR

(SD) DIFF

/t/ tar 263.00

(56.85)

367.00

(23.35)

+1.83 14.35

(2.98)

19.40

(2.34)

+1.69 8.25

(1.92)

6.06

(.98)

21.14 7.61

(2.37)

7.12

(2.07)

2.21 111.00

(25.67)

116.80

(23.62)

+.23

target 199.67

(48.71)

314.00

(48.91)

+2.35* 13.37

(2.28)

20.76

(2.97)

+3.24* 9.43

(3.31)

7.31

(1.31)

2.64 9.82

(3.02)

7.50

(2.70)

2.77 125.24

(24.95)

126.60

(24.42)

+.06

targeting 192.00

(38.26)

296.00

(42.63)

+2.72* 14.02

(3.64)

18.03

(2.33)

+1.10 9.92

(2.11)

7.92

(.96)

2.95 8.48

(2.04)

5.10

(.95)

21.66 130.61

(28.54)

107.36

(11.21)

2.81

/s/ sarge 183.67

(34.04)

200.00

(35.36)

+.48 10.89

(4.78)

10.16

(2.28)

+.15 14.15

(3.56)

7.92

(2.56)

21.75 10.85

(4.10)

6.70

(2.82)

21.01 135.93

(37.02)

96.48

(30.57)

21.07

sergeant 156.67

(19.61)

205.00

(31.82)

+2.47* 9.80

(3.63)

9.02

(1.23)

2.22 11.82

(2.26)

6.54

(1.66)

22.34* 9.40

(2.61)

7.07

(.54)

2.89 119.31

(27.27)

81.00

(12.95)

21.41

/k/ car 212.33

(58.58)

242.00

(24.90)

+.51 12.16

(3.07)

17.47

(3.37)

+1.73 9.06

(3.40)

13.98

(2.30)

+1.45 6.95

(2.56)

8.24

(1.41)

+.50 108.05

(24.27)

142.64

(25.58)

+1.43

carpet 197.67

(48.36)

221.00

(54.59)

+.48 10.88

(2.01)

16.91

(2.89)

+3.00* 9.73

(2.51)

17.32

(4.94)

+3.02* 6.74

(2.16)

11.69

(7.53)

+2.29* 101.27

(17.89)

151.92

(34.23)

+2.83*

carpenter 177.00

(40.79)

232.00

(42.37)

+1.35 11.63

(2.17)

18.46

(1.62)

+3.15* 10.75

(3.28)

15.15

(5.19)

+1.34 8.51

(2.87)

10.32

(3.39)

+.63 117.75

(16.86)

155.64

(15.54)

+2.25*

Note: CG5control group; NR5participant with AOS and Broca’s aphasia; DIFF5difference, expressed in terms of the number of standard deviations above (+) or

below (–) the control group mean; *5significantly different from the control group mean (i.e. DIFF.2 SDs).
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Table VI. Mean (and standard deviation) coefficient of variance (CV) values for the control participants’ (n53) and NR during the release phases of /t/, /s/, and /k/ in one,

two, and three syllable words.

Target

Duration (ms) Distance (mm) Acceleration (m/s2) Deceleration (m/s2) Velocity (mm/s)

CG

(SD) NR DIFF

CG

(SD) NR DIFF

CG

(SD) NR DIFF

CG

(SD) NR DIFF

CG

(SD) N DIFF

/t/ tar .150

(.131)

.064 2.66 .155

(.069)

.121 2.49 .182

(.132)

.162 2.15 .327

(.078)

.291 2.46 .179

(.071)

.202 +.32

target .132

(.086)

.156 +.28 .113

(.008)

.143 +3.75* .295

(.299)

.179 2.39 .294

(.235)

.360 +.28 .161

(.094)

.193 +.34

targeting .097

(.060)

.144 +.78 .107

(.044)

.129 +.50 .126

(.023)

.121 2.22 .160

(.005)

.186 +5.20* .072

(.026)

.104 +1.23

/s/ sarge .118

(.029)

.177 +2.03* .282

(.227)

.223 2.26 .203

(.034)

.323 +3.53* .341

(.009)

.421 +8.89* .180

(.061)

.317 +2.25*

sergeant .077

(.003)

.155 +26.00* .179

(.075)

.136 2.57 .179

(.084)

.254 +.89 .199

(.115)

.076 21.07 .151

(.071)

.160 +.13

/k/ car .108

(.054)

.103 2.09 .157

(.011)

.193 +3.27* .380

(.174)

.165 21.24 .334

(.124)

.171 21.32 .225

(.111)

.179 2.41

carpet .119

(.041)

.247 +3.12* .107

(.050)

.171 +1.28 .197

(.025)

.285 +3.52* .232

(.072)

.644 +5.72* .170

(.043)

.225 +1.28

carpenter .095

(.037)

.183 +2.38* .086

(.058)

.088 +.03 .248

(.027)

.343 +3.52* .163

(.065)

.329 +2.55* .121

(.055)

.100 2.38

Note: CG5control group; NR5participant with AOS and Broca’s aphasia; DIFF5difference, expressed in terms of the number of standard deviations above (+) or below

(–) the control group mean; +(x)5an increase in variability; 2(x)5a decrease in variability; *5significantly different from the control group mean (i.e. DIFF.2 SDs).
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mono- and multisyllabic word productions, with the exception of that recorded for /s/

during monosyllabic word productions, which was significantly more variable (see

Table VI).

Relative release phase duration. The mean total word durations recorded for NR and the

control group are presented in Figure 2a. The magnitude of the word duration increase

from the two syllable word condition to the three syllable word condition appeared to be

substantially greater for NR for /t/ and /k/-initial stimuli, compared to the control group

(see Figure 2a).

Relative release phase duration values are presented in Figure 2b. For /t/ and /k/, relative

release phase duration values decreased from the monosyllabic word to the multisyllabic

words; however, for /s/, the relative release phase duration value increased from the one

syllable word condition to the two syllable word condition (see Figure 2b). Interestingly,

while the release phases of /t/ and /k/ were shorter during multisyllabic word productions,

the magnitude of the reduction was smaller for NR, compared to the control group, for /t/,

and for /k/, there was an increase in duration from the two syllable word condition to the

three syllable word condition (see Figure 2b).

Discussion

Having acknowledged that AOS is characterized by articulatory disturbances (McNeil et al.,

1997; McNeil et al., 2004; Duffy, 2005), which are considered to be more prevalent in

words of increased length (Johns & Darley, 1970; Deal & Darley, 1972; Kent & Rosenbek,

1983; Haley & Overton, 2001), the aim of the present paper was to investigate the

kinematic parameters underlying target consonants in words of increasing length. It was

hypothesized that NR would exhibit deviant and highly variable articulatory parameters for

/t/, /s/, and /k/ during multisyllabic word productions; however, the articulatory parameters

recorded during the monosyllabic word productions were expected to be relatively

unimpaired.

Consistent with the former hypothesis, NR exhibited significantly deviant and highly

inconsistent articulatory parameters for each of the target consonants during two and three

syllable word productions. The approach and closure phases of NR’s target consonant

Figure 2. Mean word durations (ms) (a) and relative release phase durations, expressed as a percentage of the

release phase duration values obtained for the monosyllabic words (b) for /t, s, k/ in one, two, and three syllable

words. Diamonds represent control speakers, and squares represent NR.
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productions recorded during monosyllabic words, however, were also characterized by

impaired, and highly variable, articulatory movements. The presence of articulatory

variability in mono- and multisyllabic words is consistent with previous studies of AOS,

which have reported variable timing parameters during mono- and multisyllabic word

stimuli (Itoh et al., 1980; Square-Storer & Apeldoorn, 1991; Seddoh et al., 1996). Mono-

syllabic word productions, however, are typically characterized by a reduced number of

articulatory errors in AOS (Johns & Darley, 1970; Deal & Darley, 1972; Kent & Rosenbek,

1983; Haley & Overton, 2001).

The duration of the approach and closure phases of NR’s target consonants recorded

during mono- and multisyllabic word productions appeared to be particularly prolonged.

As evident from the articulatory kinematic data, NR’s increased approach phase durations

could be attributed to speed generation difficulties (i.e. reduced maximum acceleration),

and/or to a reduction in peak velocity or maximum deceleration. These results are

comparable to those obtained from previous kinematic studies of consonant production in

AOS which have revealed longer closing segment durations (McNeil & Adams, 1991; Bose

et al., 2001). Earlier studies, however, have reported discrepant results with respect to peak

velocity. McNeil and Adams (1991) reported comparable movement velocities for the

control speakers and persons with AOS, where in contrast, Itoh et al. (1980) reported

reduced movement velocities for persons with AOS. The present study revealed reduced

peak velocity measurements for /t/ and /k/ during mono- and/or multisyllabic word

productions.

During the closure phase of target consonant productions, significantly greater duration

and distance values were recorded. An increase in tongue movement at the palate could be

indicative of unstable tongue-to-palate contact. Conversely, an increase in time spent at the

palate could indicate a need for additional sensory feedback. This latter speculation is

consistent with that of Bartle, Goozée, and Murdoch (submitted). Bartle et al. (submitted)

reported silent articulatory attempts and starters in NR’s kinematic data, which the authors

interpreted as either an attempt to gain sufficient feedback for speech production, or as

‘‘practice’’ attempts to facilitate improved articulatory precision. Sensory testing was not

included in the present study, however, and therefore this latter conclusion remains

speculative.

Greater approach and closure phase durations can not be interpreted as phoneme

prolongation during stop consonant (i.e. /t, k/) productions. Prior to the release of a stop

consonant, an air-tight seal is formed with the articulators (i.e. tongue-tip pressing firmly

against the alveolar ridge) during which no sound can be heard; only the release of a stop

consonant is audible (Ball & Muller, 2005). In contrast, fricatives (i.e. /s/), unlike stop

consonants, are characterized by an audible closure phase (Ball & Muller, 2005). As such,

greater closure phase durations could be perceived as phoneme prolongation during

fricative productions. NR’s kinematic data is therefore consistent with what was perceived

during NR’s productions of /s/; NR’s /s/ consonants were perceived to be mildly prolonged.

A trend of increasing difficulty in words of increasing length was evident during the

release phase of target consonant productions. While the release phases of /t/, /s/, and /k/

were characterized by relatively comparable movement characteristics to those recorded for

the control group during monosyllabic word productions, they were characterized by

significantly greater duration or distance values during multisyllabic word productions.

Increased articulatory displacements and speed generation difficulties (i.e. reduced

maximum acceleration) could account for the increased durations recorded during the

release phases of /t/ and /s/, respectively; however, with respect to the release phase of /k/,

206 C. J. Bartle et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
Q
u
e
e
n
s
l
a
n
d
]
 
A
t
:
 
0
4
:
4
0
 
1
2
 
J
u
n
e
 
2
0
0
9



NR appeared to maintain a comparable duration to that of the control group by utilizing a

significantly greater mean maximum acceleration, mean maximum deceleration, and/or

mean maximum velocity. Given that the release phase of consonant production involves the

transition from the consonant to the vowel, a prolonged release phase could account for

increases in word length. Accordingly, an increase in word length was perceived during

NR’s ‘‘a targeting’’ productions. Interestingly, a normal word length was maintained

during ‘‘a sarge’’ repetitions. The increase in word length perceived during ‘‘a carpenter’’

repetitions could not be attributed to a prolonged /k/ release phase duration.

Despite exhibiting more severe articulatory disturbances during the release phases of

target consonants during multisyllabic word productions, NR did appear to exhibit smaller

relative release phase durations for /t/ and /k/ during two and three syllable word

productions. The release phase duration values obtained during multisyllabic word

productions were expressed as a function of the release phase duration values obtained

during monosyllabic word productions, not as a function of total word duration, as Haley

and Overton (2001) suggested that the former method was more appropriate for

participants who exhibit a substantially greater increase in word duration from

monosyllabic to multisyllabic word stimuli. It was interesting to note that for /s/, NR

appeared to maintain a similar release phase duration value during one and two syllable

word productions. Similarly, NR appeared to utilize a different pattern of release phase

reduction during /t/ and /k/-initial stimuli. According to Haley and Overton (2001), an

abnormal reduction pattern can be attributed to a motoric level deficit.

Having established that the release phase of consonant production involves the transition

from the consonant to the vowel, the aforementioned observations are consistent with

previous reports of vowel reduction in words with an increasing number of syllables in AOS

(Collins et al., 1983; Haley & Overton, 2001). In addition, studies of normal speech

production have reported that consonant durations, like vowel durations, should decrease

with an increase in word length (Lindblom, 1968). Therefore, by exhibiting this trend,

there is sufficient evidence to suggest that NR has preserved phonologic knowledge. As

such, NR’s articulatory kinematic results can be interpreted with respect to motor, rather

than linguistic, theories of speech production.

In terms of motor theory, AOS has been delineated a motor programming impairment

(Darley et al., 1975; Clark & Robin, 1998), as well as a motor planning impairment (van

der Merwe, 1997). Darley and his colleagues (1975) attributed AOS to a breakdown at the

level of the motor speech programmer (MSP) in their three-stage model of speech

production. Speech motor programming involves attending to the general motor program

(GMP), which defines the relative timing and/or force of an action, as well as its’

parameters, which defines the absolute duration and force of movement (Schmidt, 1982a,

b; Clark & Robin, 1998). Given that NR had a tendency to reduce relative release phase

durations in words with an increasing number of syllables (i.e. maintain relative timing of

movement), it could be speculated that NR had difficulty attending to the parameterization

processes involved in motor programming. Such difficulty could account for NR’s longer

absolute segment durations and subsequent decrease in speech rate. This result is

consistent with that of Clark and Robin (1998), who concluded that persons with apraxia

could only attend to one of the motor programming processes (i.e. GMP or

parameterization).

According to van der Merwe’s (1997) model of sensorimotor control for speech, a slow

rate of speech that is due to a motor programming impairment is considered to be the result

of a primary disorder in speech rate. If it is the result of a motor planning impairment,

Effect of increasing word length on articulation in AOS 207
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however, the reduction in speech rate is considered a compensatory change (van der

Merwe, 1997). Given that van der Merwe (1997) attributed AOS to a disturbance in motor

planning, it could be speculated that NR decreased her rate of speech, by increasing her

segment durations, to assist in the planning of consecutive speech movements. As such,

NR’s articulatory disturbances could have been the result of an underlying motor planning

impairment.

Conclusion

Deviant articulatory parameters and articulatory variability was recorded for each of the

target consonants during multisyllabic word productions. The approach and closure phases

of the target consonant productions, however, were also deemed deviant during

monosyllabic word productions. In general, the approach and closure phases of /t/, /s/,

and /k/ in mono- and multisyllabic word productions were primarily characterized by

increases in duration, caused by reductions in maximum acceleration, maximum

deceleration, and/or maximum velocity.

The effect of word length was most evident during the release phase of target consonant

productions. Duration values were significantly greater during the release phases of /t/ and

/s/ during multisyllabic word stimuli, whereas distance values were significantly greater

during the release phase of /k/ during two and three syllable word repetitions. No significant

disturbances were exhibited by NR during the release phase of target consonant

productions during monosyllabic word repetitions. Articulatory overshooting and speed

generation difficulties could account for the longer release phase durations. Increases in

maximum acceleration, maximum deceleration, and/or maximum velocity appeared to

counteract the increase in distance recorded during the release phase of /k/ in order to

preserve a comparable duration to that of the control group.

Regardless of exhibiting more severe articulatory disturbances during the release phase of

target consonant productions, there was evidence to suggest that NR had retained a certain

degree of phonologic knowledge. Therefore, the results obtained from the present study

were in support of a motoric account of apraxia of speech, and as such, could be interpreted

with respect to a motor programming or a motor planning impairment. Through the

collection of physiological data from a larger number of participants, it is expected that the

current understanding of AOS and how it relates to theories of speech motor control will

strengthen.
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