14 research outputs found

    Kinetic and stoichiometric characterization of anoxic sulfideoxidation by SO-NR mixed cultures from anoxic biotrickling filters.

    Get PDF
    Monitoring the biological activity in biotrickling filters is difficult since it implies estimating biomass concentration and its growth yield, which can hardly be measured in immobilized biomass systems. In this study, the characterization of a sulfide-oxidizing nitrate-reducing biomass obtained from an anoxic biotrickling filter was performed through the application of respirometric and titrimetric techniques. Previously, the biomass was maintained in a continuous stirred tank reactor under steady-state conditions resulting in a growth yield of 0.328±0.045 g VSS/g S. To properly assess biological activity in respirometric tests, abiotic assays were conducted to characterize the stripping of CO2 and sulfide. The global mass transfer coefficient for both processes was estimated. Subsequently, different respirometric tests were performed: (1) to solve the stoichiometry related to the autotrophic denitrification of sulfide using either nitrate or nitrite as electron acceptors, (2) to evaluate the inhibition caused by nitrite and sulfide on sulfide oxidation, and (3) to propose, calibrate, and validate a kinetic model considering both electron acceptors in the overall anoxic biodesulfurization process. The kinetic model considered a Haldane-type equation to describe sulfide and nitrite inhibitions, a non-competitive inhibition to reflect the effect of sulfide on the elemental sulfur oxidation besides single-step denitrification since no nitrite was produced during the biological assays

    Experiences With and Attitudes Toward Death and Dying Among Homeless Persons

    Get PDF
    BACKGROUND: Homeless persons face many barriers to health care, have few resources, and experience high death rates. They live lives of disenfranchisement and neglect. Few studies have explored their experiences and attitudes toward death and dying. Unfortunately, studies done in other populations may not apply to homeless persons. Exploring these experiences and attitudes may provide insight into life, health care, and end-of-life (EOL) concerns of this population. OBJECTIVE: To explore the experiences and attitudes toward death and dying among homeless persons. DESIGN: Qualitative study utilizing focus groups. PARTICIPANTS: Fifty-three homeless persons recruited from homeless service agencies. MEASUREMENTS: In-depth interviews, which were audiotaped and transcribed. RESULTS: We present seven themes, some of which are previously unreported. Homeless persons described many significant experiences with death and dying, and many participants suffered losses while very young. These encounters influenced participants’ attitudes toward risks and risky behavior: e.g., for some, these experiences provided justification for high-risk behaviors and influenced their behaviors while living on the streets. For others, they may be associated with their homelessness. Finally, these experiences informed their attitudes toward death and dying as well as EOL care; homeless persons believe that care will be poor at the EOL. CONCLUSIONS: Findings from this study have implications for addressing social services, health promotion, prevention, and EOL care for homeless persons, as well as for others who are poor and disenfranchised

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Cool-season grain legume improvement in Australia - use of genetic resources

    No full text
    The cool-season grain legume industry in Australia, comprising field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), lentil (Lens culinaris ssp. culinaris Medik.), and narrow-leaf lupin (Lupinus angustifolius L.), has emerged in the last 40 years to occupy a significant place in cropping systems. The development of all major grain legume crops—including field pea, which has been grown for over 100 years—has been possible through large amounts of genetic resources acquired and utilised in breeding. Initially, several varieties were released directly from these imports, but the past 25 years of grain legume breeding has recombined traits for adaptation and yield for various growing regions. Many fungal disease threats have been addressed through resistant germplasm, with varying successes. Some threats, e.g. black spot in field pea caused by Mycosphaerella pinodes (Berk. and Blox.) Vestergr., require continued exploration of germplasm and new technology. The arrival of ascochyta blight in chickpea in Australia threatened to destroy the chickpea industry of southern Australia, but thanks to resistant germplasm, it is now on its way to recovery. Many abiotic stresses including drought, heat, salinity, and soil nutritional toxicities continue to challenge the expansion of the grain legume area, but recent research shows that genetic variation in the germplasm may offer new solutions. Just as the availability of genetic resources has been key to successfully addressing many challenges in the past two decades, so it will assist in the future, including adapting to climate change. The acquisition of grain legume germplasm from overseas is a direct result of several Australians who fostered collaborations leading to new collection missions enriching the germplasm base for posterity.K. H. M. Siddique, W. Erskine, K. Hobson, E. J. Knights, A. Leonforte, T. N. Khan, J. G. Paull, R. Redden, and M. Matern

    Do rats have orgasms?

    No full text
    corecore