150 research outputs found

    Magnetic order and excitations in La1.48Nd0.4Sr0.12CuO4

    Get PDF

    Inelastic x-ray scattering investigations of lattice dynamics in SmFeAsO1−x_{1-x}Fy_y superconductors

    Full text link
    We report measurements of the phonon density of states as measured with inelastic x-ray scattering in SmFeAsO1−x_{1-x}Fy_y powders. An unexpected strong renormalization of phonon branches around 23 meV is observed as fluorine is substituted for oxygen. Phonon dispersion measurements on SmFeAsO1−x_{1-x}Fy_y single crystals allow us to identify the 21 meV A1g_{1g} in-phase (Sm,As) and the 26 meV B1g_{1g} (Fe,O) modes to be responsible for this renormalization, and may reveal unusual electron-phonon coupling through the spin channel in iron-based superconductors.Comment: 4 pages, 3 figures, submitted for SNS2010 conference proceeding

    Temperature dependence of the (π,0) anomaly in the excitation spectrum of the 2D quantum Heisenberg antiferromagnet

    Get PDF
    Dedicated to the life and work of Professor Roger Cowley. 22 pages, 8 figuresIt is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the (π,0) point the pole in the one-magnon response exhibits a downward dispersion, is heavily damped and attenuated, giving way to an isotropic continuum of excitations extending to high energies. The origin of the anomaly and the presence of the continuum are of current theoretical interest, with suggestions focused around the idea that the latter evidences the existence of spinons in a two-dimensional system. Here we present the results of neutron inelastic scattering experiments and Quantum Monte Carlo calculations on the metallo-organic compound Cu(DCOO)2⋅4D2O (CFTD), an excellent physical realisation of the 2DQHAFSL, designed to investigate how the anomaly at (π,0) evolves up to finite temperatures T/J∌2/3. Our data reveal that on warming the anomaly survives the loss of long-range, three-dimensional order, and is thus a robust feature of the two-dimensional system. With further increase of temperature the zone-boundary response gradually softens and broadens, washing out the (π,0) anomaly. This is confirmed by a comparison of our data with the results of finite-temperature Quantum Monte Carlo simulations where the two are found to be in good accord. At lower energies, in the vicinity of the antiferromagnetic zone centre, there was no significant softening of the magnetic excitations over the range of temperatures investigated.Accepted manuscrip

    Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7

    Get PDF
    Much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d5 iridates (Ir4ĂŸ), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (Os5ĂŸ) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve the magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation

    Field-controlled magnetic order in the quantum spin-ladder system (Hpip)2CuBr4

    Get PDF
    International audienceNeutron diffraction is used to investigate the field-induced, antiferromagnetically ordered state in the two-leg spin-ladder material (Hpip)2CuBr4. This “classical” phase, a consequence of weak interladder coupling, is nevertheless highly unconventional: its properties are influenced strongly by the spin Luttinger-liquid state of the ladder subunits. We determine directly the order parameter (transverse magnetization), the ordering temperature, the spin structure, and the critical exponents around the transition. We introduce a minimal microscopic model for the interladder coupling and calculate the quantum fluctuation corrections to the mean-field interaction
    • 

    corecore