48 research outputs found

    Elements and stable isotopes as tracers for sleeper shark biology and the Iceland marine food web

    Get PDF
    Stable isotope studies often rely on only two tracers (usually [delta] 13C and [delta]15N) to study marine ecosystems, which are inherently complex. The ability of elements to act as additional tracers of ecological processes in marine organisms and in a marine food web was investigated. The element analysis of two sleeper shark species, Pacific (\u27Somniosus pacificus\u27) and Greenland (\u27Somniosus microcephalus\u27), collected from different ecosystems demonstrated that elements are useful indicators of physiological and exposure differences between closely related species. The Greenland shark\u27s food web about Iceland was more clearly resolved concerning trophic links and carbon sources by combining mercury data with stable isotope and stomach content data. Mercury also indicated that \u27Lycodes\u27 potentially belonged to a different food web than the other fishes. Results from this research demonstrated the value of elemental tracers in food web studies and generated new questions about the application and interpretation of trophic position designations

    SPATIAL AND TEMPORAL PATTERNS OF ENERGY FLOW IN A SEASONALLY VARIABLE MARINE ENVIRONMENT

    Get PDF
    Food web theory has uncovered several structures, or patterns of carbon flow, that increase food web persistence. However, empirical studies focused on these structures have been largely restricted to temperate and tropical areas. In the present dissertation, I sampled the food web of Cumberland Sound, Nunavut during summer (August) and winter (April) of 2007-2009 and used stable isotopes (SI: d15N, d13C) and fatty acids (FA) to identify whether this arctic food web exhibited the following structures: 1) spatial resource coupling, 2) individual diet specialization and 3) temporal resource coupling. I first identified that the FA profile of a key arctic herbivore (Calanus hyperboreus) consistently differed between summer and winter over two years (e.g. higher 18:1n-9 in winters vs. summers), which aided in the interpretation of FAs in upper trophic levels. I then tested for the presence of spatial resource coupling in the summer food web. Based on d15N-derived trophic positions and d13C-derived % reliance on phytoplankton (vs. macroalgae), lower trophic levels fed predominantly on one of two resources and upper trophic levels used multiple resources, supporting the existence of spatial resource coupling. Following a preliminary analysis comparing Greenland shark (Somniosus microcephalus) and prey FAs, inter-tissue differences in Greenland shark 22:5n-3 among muscle, liver and plasma revealed that some individual sharks fed on consistent resources, but that the extent of individual diet specialization varied over time. Individual Greenland sharks were therefore concluded to feed as generalists, which is consistent with the finding that Cumberland Sound consumers acted as spatial resource couplers. Finally, SIs and FAs revealed that ~50% of Cumberland Sound species switched their diet between summer and winter. A literature review confirmed this temporal resource coupling by consumers on a pan-arctic scale. Overall, structures of an arctic food web agreed with those predicted by recent food web theory, such that spatial and temporal variability in resource abundance and consumer feeding behaviour are likely important for arctic food web persistence. In this context, any result of climate warming that acts to synchronize resource dynamics or remove consumer resource coupling could decrease the persistence of arctic food webs

    Effects of seasonal seston and temperature changes on lake zooplankton fatty acids

    Get PDF
    Abstract We investigated how seston fatty acids (FA) and water temperature explained seasonal variation in cladoceran and copepod FA over three years in pre-alpine, oligotrophic Lake Lunz, Austria. Using the mostly algalderived polyunsaturated FA (PUFA: arachidonic, ARA; eicosapentaenoic, EPA; docosahexaenoic acid, DHA), terrestrial FA (TFA, 22 : 0, 24 : 0), and bacterial FA (BAFA, 15 : 0, 17 : 0 and their branched homologues) as source-specific biomarkers, we show that cladocerans consistently contained more ARA and EPA and copepods more DHA than the available food (seston). None of these physiologically important PUFA were significantly related between zooplankton and seston across the entire study period but copepod DHA increased with seston DHA during the coldest months (< 8 C, based on a significant seston FA*temperature interaction). EPA, conversely, increased with decreasing water temperature in both zooplankton groups. For the nonessential FA, TFA were lower in zooplankton than in seston and not related to dietary supply or water temperature. However, cladoceran and copepod BAFA increased significantly with increasing seston BAFA and decreasing water temperature. These findings suggest that physiological regulation in response to changing water temperature had a significant impact on cladoceran and copepod EPA and the extent of dietary tracking for copepod DHA. TFA available in the seston may not have been consumed or were poorly incorporated by zooplankton, but BAFA were good indicators of available resources throughout multiple seasonal cycles. Based on our study, both FA type and water temperature impact the extent that dietary vs. nondietary processes govern cladoceran and copepod FA in oligotrophic lakes

    Comparative Brain Morphology of the Greenland and Pacific Sleeper Sharks and its Functional Implications

    Get PDF
    In cartilaginous fishes, variability in the size of the brain and its major regions is often associated with primary habitat and/or specific behavior patterns, which may allow for predictions on the relative importance of different sensory modalities. The Greenland (Somniosus microcephalus) and Pacific sleeper (S. pacificus) sharks are the only non-lamnid shark species found in the Arctic and are among the longest living vertebrates ever described. Despite a presumed visual impairment caused by the regular presence of parasitic ocular lesions, coupled with the fact that locomotory muscle power is often depressed at cold temperatures, these sharks remain capable of capturing active prey, including pinnipeds. Using magnetic resonance imaging (MRI), brain organization of S. microcephalus and S. pacificus was assessed in the context of up to 117 other cartilaginous fish species, using phylogenetic comparative techniques. Notably, the region of the brain responsible for motor control (cerebellum) is small and lacking foliation, a characteristic not yet described for any other large-bodied (\u3e3 m) shark. Further, the development of the optic tectum is relatively reduced, while olfactory brain regions are among the largest of any shark species described to date, suggestive of an olfactory-mediated rather than a visually-mediated lifestyle

    Seasonal increases in fish trophic niche plasticity within a flood-pulse river ecosystem (Tonle Sap Lake, Cambodia)

    Get PDF
    Species' responses to seasonal environmental variation can influence trophic interactions and food web structure within an ecosystem. However, our ability to predict how species' interactions will vary spatially and temporally in response to seasonal variation unfortunately remains inadequate within most ecosystems. Fish assemblages in the Tonle Sap Lake (TSL) of Cambodia-a dynamic flood-pulse ecosystem-were studied for five years (2010-2014) using stable isotope and Bayesian statistical approaches to explore both within-and among-species isotopic niche variation associated with seasonal flooding. Roughly 600 individual fish specimens were collected during 19 sampling events within the lake. We found that fishes within the same species tended to have a broader isotopic niche during the wet season, likely reflecting assimilation of resources from either a wider range of isotopically distinct prey items or a variety of habitats, or both. Furthermore, among-species isotopic niches tended to overlap and range more broadly during the wet season, suggesting that floodplain inundation promotes exploitation of more diverse and similar resources by different species in the fish community. Our study highlights that the flood-pulse dynamic that is typical of tropical aquatic ecosystems may be an essential element supporting freshwater fish community structure and the fish diversity that underpins the TSL food web. This flow regime is currently threatened by regional dam development, which may in turn impact the natural function and structure of the fishery food web

    Mercury in the marine environment of the Canadian Arctic: Review of recent findings

    Get PDF
    AbstractThis review summarizes data and information which have been generated on mercury (Hg) in the marine environment of the Canadian Arctic since the previous Canadian Arctic Contaminants Assessment Report (CACAR) was released in 2003. Much new information has been collected on Hg concentrations in marine water, snow and ice in the Canadian Arctic. The first measurements of methylation rates in Arctic seawater indicate that the water column is an important site for Hg methylation. Arctic marine waters were also found to be a substantial source of gaseous Hg to the atmosphere during the ice-free season. High Hg concentrations have been found in marine snow as a result of deposition following atmospheric mercury depletion events, although much of this Hg is photoreduced and re-emitted back to the atmosphere. The most extensive sampling of marine sediments in the Canadian Arctic was carried out in Hudson Bay where sediment total Hg (THg) concentrations were low compared with other marine regions in the circumpolar Arctic. Mass balance models have been developed to provide quantitative estimates of THg fluxes into and out of the Arctic Ocean and Hudson Bay.Several recent studies on Hg biomagnification have improved our understanding of trophic transfer of Hg through marine food webs. Over the past several decades, Hg concentrations have increased in some marine biota, while other populations showed no temporal change. Marine biota also exhibited considerable geographic variation in Hg concentrations with ringed seals, beluga and polar bears from the Beaufort Sea region having higher Hg concentrations compared with other parts of the Canadian Arctic. The drivers of these variable patterns of Hg bioaccumulation, both regionally and temporally, within the Canadian Arctic remain unclear. Further research is needed to identify the underlying processes including the interplay between biogeochemical and food web processes and climate change

    Origins of the Greenland shark (Somniosus microcephalus): Impacts of ice-olation and introgression

    Get PDF
    Herein, we use genetic data from 277 sleeper sharks to perform coalescent-based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic-Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub-Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial-interglacial cycles. We propose that the initial S. microcephalus–S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale

    Advancing Research for the Management of Long-Lived Species: A Case Study on the Greenland Shark

    Get PDF
    Long-lived species share life history traits such as slow growth, late maturity, and low fecundity, which lead to slow recovery rates and increase a population’s vulnerability to disturbance. The Greenland shark (Somniosus microcephalus) has recently been recognized as the world’s longest-lived vertebrate, but many questions regarding its biology, physiology, and ecology remain unanswered. Here we review how current and future research will fill knowledge gaps about the Greenland shark and provide an overall framework to guide research and management priorities for this species. Key advances include the potential for specialized aging techniques and demographic studies to shed light on the distribution and age-class structure of Greenland shark populations. Advances in population genetics and genomics will reveal key factors contributing to the Greenland shark’s extreme longevity, range and population size, and susceptibility to environmental change. New tagging technologies and improvements in experimental and analytical design will allow detailed monitoring of movement behaviors and interactions among Greenland sharks and other marine species, while shedding light on habitat use and susceptibility to fisheries interactions. Interdisciplinary approaches, such as the combined use of stable isotope analysis and high-tech data-logging devices (i.e., accelerometers and acoustic hydrophones) have the potential to improve knowledge of feeding strategies, predatory capabilities, and the trophic role of Greenland sharks. Measures of physiology, including estimation of metabolic rate, as well as heart rate and function, will advance our understanding of the causes and consequences of long lifespans. Determining the extent and effects of current threats (as well as potential mitigation measures) will assist the development of policies, recommendations, and actions relevant for the management of this potentially vulnerable species. Through an interdisciplinary lens, we propose innovative approaches to direct the future study of Greenland sharks and promote the consideration of longevity as an important factor in research on aquatic and terrestrial predators
    corecore