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ABSTRACT 

Food web theory has uncovered several structures, or patterns of carbon flow, that 

increase food web persistence. However, empirical studies focused on these structures 

have been largely restricted to temperate and tropical areas. In the present dissertation, I 

sampled the food web of Cumberland Sound, Nunavut during summer (August) and 

winter (April) of 2007-2009 and used stable isotopes (SI: δ15N, δ13C) and fatty acids (FA) 

to identify whether this arctic food web exhibited the following structures: 1) spatial 

resource coupling, 2) individual diet specialization and 3) temporal resource coupling. I 

first identified that the FA profile of a key arctic herbivore (Calanus hyperboreus) 

consistently differed between summer and winter over two years (e.g. higher 18:1n-9 in 

winters vs. summers), which aided in the interpretation of  FAs in upper trophic levels. I 

then tested for the presence of spatial resource coupling in the summer food web. Based 

on δ15N-derived trophic positions and δ13C-derived % reliance on phytoplankton (vs. 

macroalgae), lower trophic levels fed predominantly on one of two resources and upper 

trophic levels used multiple resources, supporting the existence of spatial resource 

coupling. Following a preliminary analysis comparing Greenland shark (Somniosus 

microcephalus) and prey FAs, inter-tissue differences in Greenland shark 22:5n-3 among 

muscle, liver and plasma revealed that some individual sharks fed on consistent 

resources, but that the extent of individual diet specialization varied over time. Individual 

Greenland sharks were therefore concluded to feed as generalists, which is consistent 

with the finding that Cumberland Sound consumers acted as spatial resource couplers. 

Finally, SIs and FAs revealed that ~50% of Cumberland Sound species switched their 

diet between summer and winter. A literature review confirmed this temporal resource 
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coupling by consumers on a pan-arctic scale. Overall, structures of an arctic food web 

agreed with those predicted by recent food web theory, such that spatial and temporal 

variability in resource abundance and consumer feeding behaviour are likely important 

for arctic food web persistence. In this context, any result of climate warming that acts to 

synchronize resource dynamics or remove consumer resource coupling could decrease 

the persistence of arctic food webs. 
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CHAPTER 1 

GENERAL INTRODUCTION 
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BACKGROUND AND RATIONALE 

Food web ecology: beginnings and recent advances 

 Food webs are complex networks of trophic interactions that describe who eats 

whom in an ecosystem (Pimm 1982). From groundbreaking insights by Elton (1927), that 

biomass decreased with each successive trophic step, Lindeman (1942), that energy was 

lost at each consumer-resource interaction, and Hairston et al. (1960), that consumers can 

regulate community structure, arose a rich area of food web research. Much of this 

research has focused on integrating food web structure with mechanisms that promote 

food web persistence, or the continued existence of food webs through time (MacArthur 

1955; May 1973; Yodzis 1981; Worm and Duffy 2003). Early food web ecologists 

revealed that food webs do have 'structure', or, patterns of carbon flow within a food web 

that arise from consumer feeding interactions, and identified several food web structures 

that were common across a range of habitats (e.g. Pimm 1982; Briand and Cohen 1984; 

Cohen and Briand 1984). For example, food chains were consistently found to be short (< 

4 trophic levels, Pimm et al. 1991) and omnivory was generally considered rare (Pimm et 

al. 1991). Most of these patterns, however, were found to be artifacts of the data used to 

generate them, and food webs were criticized for being overly simplified, highly 

aggregated and quantified without attention to spatial scale (Winemiller 1990; Polis 1991; 

Paine 1988).  

 Following the criticism of early work, ecologists began to collect more 

biologically meaningful food web data that were less aggregated and that heeded scale 

and the biology of individual species. This next wave of food web research gave rise to 

the now widely accepted perception that, within food webs, omnivory is common (Isaacs 

1973; Polis 1991; Polis and Strong 1996) and resource use varies with time and space 
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(Winemiller 1990; Polis et al. 1997; Akin and Winemiller 2006). Polis et al. (1996, pg. 

454) summed up their view of the past and future directions of food web ecology as 

follows:  

"We could view this [early] body of work as the fruition of the first historical phase in 

the development of food web ecology. We firmly believe that progress toward the next 

mature phase of food web studies mandates grappling with the complexities of spatial 

processes, temporal heterogeneity, and life history strategies. These strands must all be 

interwoven into a broad conceptual framework to arrive at a deep understanding of 

food web structure and dynamics."  

 Three major advances in food web theory have brought us closer towards this 

'broad conceptual framework' by linking observed structures with food web persistence, 

while explicitly incorporating complexity, spatial processes and individual traits. These 

recently identified food web structures, found to promote persistence, are: 1) spatial 

asynchrony in available resources and the coupling of these resources by consumers (Fig. 

1.1, also referred to as multi-channel omnivory, Vadeboncoeur et al. 2005; Rooney et al. 

2006; McCann and Rooney 2009), 2) individual diet specialization (Fig. 1.2, Bolnick et 

al. 2003; Bolnick et al. 2011) and 3) the coupling of temporally asynchronous resources 

by generalist consumers (Fig. 1.3, McCann et al. 2005). Based on theoretical models, the 

1st and 2nd structures (spatial resource coupling and individual specialization) increase 

food web persistence (details provided under 'Food web structures studied' section) and 

are common in terrestrial and aquatic food webs from tropical and temperate latitudes 

(Bolnick et al. 2003; Rooney et al. 2006). The 3rd structure, temporal coupling of 

asynchronous resources, is thought to impart persistence to food webs in a similar manner 
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to spatial coupling (McCann et al. 2005), but few empirical data have been collected to 

explore its prevalence in food webs.  

 The three aforementioned structures, and their associated mechanisms that 

promote persistence, can be viewed as a current 'framework' for food web ecology. 

Considering the three components of this framework together, it becomes clear that a 

common thread is variability, which can be defined as: the quality, state, or degree of 

being variable or changeable, the quality of being uneven and lacking uniformity 

(http://www.thefreedictionary.com/variability). Spatial and temporal coupling of 

resources (i.e. structures 1 and 3 above, Figs. 1.1 and 1.3) is contingent upon different 

resources varying in their availability (McCann et al. 2005; Rooney et al. 2006) and 

individual specialization (structure 2, Fig. 1.2), which can have large-scale effects on 

food webs (Bolnick et al. 2011), only arises when individuals vary in their selection of 

resources. Interestingly, however, there has been little discussion of how temporal 

environmental variability fits into this current food web framework. Ecologists have long 

noted that abiotic, environmental factors affect groups of animals (Andrewartha and 

Birch 1954). Temporal variability in abiotic conditions, and species responses to this 

variability, have since been incorporated into the theories of competitive coexistence 

(Chesson and Huntly 1997) and community regulation (Menge and Sutherland 1976). 

However, it remains unknown: do spatial and temporal coupling and individual 

specialization arise and promote food web persistence even in environments that 

experience drastic temporal changes in abiotic conditions and primary production?  

 In this dissertation, I seek to identify whether the three structures, recently 

identified by theory and observed in temperate climates (i.e. Fig. 1.1-1.3), arise in a 
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seasonally variable marine environment (Cumberland Sound, Baffin Island, Nunavut). 

The goal of this dissertation is to incorporate temporal heterogeneity into our 

understanding of what structures impart persistence to food webs. To do so, observed 

structures in an arctic marine food web will be compared with those predicted by recent 

theory (Figs. 1.1-1.3). Results of this dissertation are important for identifying: 1) what 

mechanisms promote persistence in food webs from temporally variable environments, 

and 2) on a larger scale, how universally important are these structures to food webs in 

general? Because polar seas are experiencing altered food web structure as a result of 

warmer temperatures and less ice cover duration (MacNeil et al. 2010; Wassmann et al. 

2011; Weslawski et al. 2011), the answers to these questions are especially pressing. 

 In the following section, several terms are defined in the context of their use in the 

present dissertation and brief summaries of the three food web structures studied are 

provided. 

FOOD WEB STRUCTURES STUDIED 

Defining terms  

 Several terms used here do not have equivocal meanings, and require explicit 

definition based on their use in the context of this dissertation. 'Structure' is defined as a 

pattern of carbon flow that arises within a food web as a result of feeding interactions 

among consumers. 'Resource asynchrony' occurs when multiple resources vary out-of-

phase with one another, that is, when one is increasing the other is decreasing, or when 

one is very abundant, the other is more scarce. The ability of consumers to act as 

'couplers' of this resource variability, in space or time, refers to the ability of a species to 

consume or 'couple' an abundant or increasing resource and to abandon or  'decouple' 
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from a declining resource. Finally, 'stability' is a contentious, ambiguous and often poorly 

defined term in ecology with a myriad of meanings (Grimm and Wissel 1997). However, 

its widespread use in the ecological literature, and specifically in relation to food web 

structure and mechanisms of 'stability' (MacArthur 1955; May 1973; Yodzis 1981; 

Rooney et al. 2006), make it difficult to avoid its use entirely. In the present dissertation, 

'stability' is most often avoided for the more explicit term 'persistence', because the goal 

of the present dissertation was to shed light on some structures of food webs in seasonally 

variable environments that could promote their persistence (i.e. continued existence). As 

defined by Grimm and Wissel (1997), 'stability' is a more general 'short form or 

substitute' for a broad group of 'stability properties' that include constancy (e.g. when 

changes in population size are bounded), resiliency (i.e. returning to a reference dynamic 

after a disturbance) and persistence (i.e. continuing to exist through time). Thus, 

'stability', when used in the present dissertation, refers to this group of 'stability 

properties', not to one concept or idea. 

Structure 1. Coupling of spatially asynchronous resources 

 Resources from one location are known to act as subsidies for consumers in 

different locations (Polis et al. 1997; Polis et al. 1996; Winemiller 1990; Polis and Strong 

1996). Rooney et al. (2006) developed this idea further, and found, using mathematical 

models, that the most stable food web configurations arose when: 1) resources differed in 

their  production and biomass turnover (i.e. when one was 'fast' (phytoplankton) and one 

'slow' (detritus)), and 2) when consumers coupled fast-slow 'resource compartments', 

which arise when lower trophic levels tend to feed predominantly on one basal resource 

(Rooney et al. 2006). Based on a comparison of 4 aquatic and 4 terrestrial food webs, 
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food webs were in fact structured in a similar manner to theoretical predictions, such that 

lower trophic levels tended to derive their energy predominantly from one of two basal 

resources (e.g. phytoplankton and detritus in aquatic systems), generating 'resource 

compartments', which were then coupled by upper trophic level consumers (by moving 

across spatial landscapes, feeding on abundant resources in different resource 

compartments, Fig. 1.1). Such a structure is stabilizing because the asynchrony of 

resources (i.e. arising from their fast and slow production and biomass turnover) provides 

a stable food base for consumers (Rooney et al. 2006). Also, the ability of consumers to 

move to areas with abundant resources and leave areas with scarce or declining resources 

imparts a flexible nature to food webs, by allowing scarce resources to recover (Rooney 

et al. 2006). The conclusion that the spatial coupling of asynchronous resources is 

important for food web persistence has major implications for inferring underlying 

processes based on observed structures of real food webs. However, it remains unknown 

if such structures exist in temporally variable, highly seasonal environments. 

Structure 2.  Individual specialization  

 Based on the above work, generalists are important for coupling resource 

compartments in food webs (Rooney et al. 2006). However, an increasing body of 

literature has revealed that populations of generalists (i.e. those that consume a wide 

range of resources) are commonly composed of 'individual specialists' that specialize on a 

subset of the populations' total resources (Fig. 1.2, e.g. Svanbäck and Bolnick 2005; 

Bolnick et al. 2007; Araújo et al. 2011; Bolnick et al. 2011; Matich et al. 2011). Because 

higher phenotypic variability can lead to a larger range of resources used by the 

population, populations composed of individual specialists can have wider niches and 
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interact with more species than populations composed of individual generalists (Bolnick 

et al. 2011). In this way, high individual specialization within a predator population 

should increase connectivity at the food web level and decrease the strength of any one 

predator-prey link (because only a subset of the population participates in any one 

interaction with another species). Because weak trophic interactions are important for 

food web persistence (McCann et al. 1998), high individual specialization in a predator 

population would be expected to increase food web persistence (Bolnick et al. 2011). 

However, a predator population with high individual specialization would also be less 

likely to couple resources in space (Bolnick et al. 2011; Matich et al. 2011). Thus, any 

consideration of what structures exist in food webs to promote their persistence should 

also consider the extent of diet variability at the level of individuals. It is currently 

unknown if consumers inhabiting seasonally variable environments, like arctic seas, 

which would be predicted to feed as generalists (MacArthur 1955), exhibit individual 

specialization.  

Structure 3. Coupling of temporally asynchronous resources 

 Spatial and temporal processes are intricately linked (Polis et al. 1996). Similar to 

the mechanisms described above for space, resources are known to vary in time, and 

consumers are considered able to respond to this variability by switching their diet to 

exploit abundant prey (Polis et al. 1996; McCann et al. 2005). Several detailed studies 

have categorized how food web properties vary with time (Winemiller 1990; Johnson et 

al. 2009), but few studies have attempted to identify whether temporal structures arise 

and act to promote persistence in a similar manner to those recently identified in space 

(i.e. Fig. 1.1, Rooney et al. 2006). Extrapolating from spatial food web theory (Rooney et 
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al. 2006), these stabilizing structures in the temporal dimension are: 1) multiple resources 

are present and vary asynchronously through time (i.e. as one resource is declining, 

another becomes abundant) and 2) consumers should respond to such variability by 

switching their diet in time to exploit abundant and abandon declining resources (Fig. 1.3, 

McCann et al. 2005). Temporal resource asynchrony would provide a consistent resource 

base to consumers during both productive and non productive times. The ability of 

consumers to switch their diet to exploit abundant resources would allow them to 

maintain biomass, and food webs to maintain diversity, even during non productive times 

(Polis et al. 1996; McCann et al. 2005). However, very few empirical data exist to 

determine if temporally asynchronous resources are in fact coupled by consumers in real 

food webs, although this structure could be equally as important for food web persistence 

as spatial resource coupling (McCann et al. 2005; Polis et al. 1996). 

THE ARCTIC AS A MODEL SYSTEM  

 Arctic seas are among the most temporally variable environments on earth, 

experiencing seasonal changes in light, temperature, ice cover, and salinity, as well as 

random perturbations from storms and floods (Walsh 2008). Primary production occurs 

only during a short 1-3 month window in the summer (Walsh 2008), and some arctic 

marine ecosystems experience no primary production during upwards of 90% of the year 

(Weslawski et al. 1991). This long separation between periods of primary production is 

what sets arctic ecosystems apart from northern marine ecosystems, where, although 

seasonality occurs, the duration separating productive periods is much shorter 

(Weslawski et al. 1991). Thus, arctic animals must be adapted not only to cold 

temperatures, but to drastic temporal variability in resources (Clarke 1983). The arctic is 
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therefore a fruitful location to investigate how high temporal environmental variability 

affects the feeding behaviour of individuals, energy flow among species and the existence 

of spatial and temporal coupling by consumers.  

 Previous work has stressed the importance of phytoplankton as a resource for both 

benthic and pelagic consumers in the arctic during the summer (Renaud et al. 2011; 

Forest et al. 2008). However, the importance of other autochthonous energy sources, like 

benthic macroalgae, has been largely ignored in arctic seas (but see Dunton and Schell 

1987). It is therefore unclear how species exposed to two carbon sources (e.g. 

phytoplankton and benthic macroalgae): a) selectively feed in one or both of these energy 

channels or b) partition resources within these  channels.  

 Because the arctic tends to have lower diversity than temperate or tropical 

systems (Hillebrand 2004), one might expect lower inter- and higher intra-specific 

competition in upper trophic level species; the 'recipe' for individual specialization 

(Svanbäck and Bolnick 2005). On the other hand, organisms inhabiting variable 

ecosystems that experience resource limitation would be expected to feed as generalists 

(MacArthur and Pianka 1966). Several marine consumer populations from temperate 

latitudes exhibit individual diet specializations (Estes et al. 2003; Matich et al. 2011). No 

study to date, however, has explored the existence of individual specialization in an arctic 

marine predator.  

 High seasonality is a major characteristic of arctic oceans, but sea ice cover makes 

sampling arctic marine organisms during winter difficult. As a result, unlike more 

temperate areas (Akin and Winemiller 2006), few studies have quantified differences in 

structure of entire food webs between times of open water (i.e. summer, abundant 
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phytoplankton) and ice cover (i.e. winter, no primary production) (e.g. Søreide et al. 2006 

studied summer-winter diet of pelagic food web; Renaud et al. 2011 studied seasonal 

changes in benthic food web). It therefore remains largely unstudied how entire arctic 

food webs respond to the absence of primary production. 

DISSERTATION OBJECTIVE 

 The objective of this dissertation is to unite our current understanding of energy 

flow in a highly seasonal system with the framework generated from recent food web 

theory by:  

1) Assessing patterns of energy flow in space and time among arctic consumers 

2) Comparing observed patterns to those predicted from theory (Figs. 1.1-1.3) 

The null and alternate hypotheses for this objective are:  

Ho: patterns in a highly seasonal system = predicted patterns  

Ha: patterns in a highly seasonal system ≠ predicted patterns  

 In this dissertation, I make use of the principle that 'pattern is generated by 

process' (pg. 682, Paine 1980). Specifically, based on observed patterns in resource use 

among arctic consumers, and how these patterns compare with and deviate from 

theoretical predictions, I hope to shed light on what mechanisms underlie structure and 

impart persistence to arctic food webs.  

METHODS  

 Chemical tracers, including stable isotopes of carbon (δ13C) and nitrogen (δ15N) 

and fatty acids, are useful tools for investigating changes in food web structure because 

they provide information about how organisms acquire essential biomolecules (e.g. 
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protein, fatty acids) necessary for energy and survival. These biomolecules are 

incorporated into the tissues of a predator over time, and therefore provide an integrated 

view of an organisms diet that is more dynamic in nature than the more static view 

provided by stomach contents (Peterson and Fry 1987; Olive et al. 2003). Additionally, 

because different tissues have different turnover times, analyzing chemical tracers of 

multiple tissues can be used to identify long-term (slow turnover, e.g. muscle, MacNeil et 

al. 2006) and recent (fast turnover, e.g. blood plasma, Kӓkelӓ et al. 2009) diet. 

Values of δ13C often differ between certain primary producers in marine 

environments, like phytoplankton and ice algae (Hobson and Welch 1992). Because δ13C 

increases only moderately between a food source and a consumer's tissues (i.e. 0-1‰, 

Post 2002), it can be used to identify a consumer's reliance on two isotopically distinct 

resources (France 1995). The mechanism driving different δ13C values between basal 

resources in different ecosystems is fairly well known, and arises due to differences in the 

fractionation during uptake of CO2 from the atmosphere (land plants) or dissolved CO2 

from the water (aquatic plants). C3 plants are the most selective against 13C and 

subsequently are isotopically lighter than less selective C4 plants (Peterson and Fry 

1987). Because dissolved CO2 in the oceans is heavier than atmospheric CO2 (due to an 

equilibrium reaction between CO2 and HCO3-), phytoplankton have higher 13C than 

terrestrial C3 plants and typically have δ13C values between -23 and -20‰ (terrestrial C3 

plants δ13C ≈ -28‰) (Peterson and Fry 1987). Within aquatic ecosystems, δ13C further 

discriminates between primary producers, because phytoplankton tends to be isotopically 

lighter than benthic algae (Hobson and Welch 1992), likely due to the effect of a benthic 

boundary layer on the latter, which limits CO2 availability (France 1995). The 
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mechanisms driving enrichment of 13C between a consumer's tissues and its food source 

is less well understood, but is likely attributed to respiration of isotopically light CO2, or 

excretion of isotoically light waste products that contain carbon (e.g. urea in sharks) 

(Peterson and Fry 1987).  

Values of δ15N are used to assign trophic positions to consumers because they 

typically increase by 3-4‰ between a food source and a consumer's tissues (Post 2002). 

The calculation of trophic position based on δ15N is somewhat contentious because it is 

based on several assumptions. Firstly, trophic position calculations require δ15N values 

from a system-specific baseline organism that is assumed to represent a time-integrated 

signature of the primary producer (Vander Zanden and Rasmussen 1999). Filter-feeding 

primary consumers are useful for this purpose because they are slow growing, assumed to 

incorporate short term fluctuations in δ15N, and therefore provide a time-averaged 

baseline value for a given ecosystem (Vander Zanden and Rasmussen 1999).  

Perhaps the largest and most contentious issue surrounding δ15N-based trophic 

positions, however, is the uncertainty surrounding diet-tissue discrimination factors (Caut 

et al. 2009). For example, these ∆
15N can be taxa- and tissue-specific, such that applying 

a value derived from a literature review (Post 2002) may be inappropriate (Caut et al. 

2009). Values of ∆15N can also vary with the δ15N of the food (Caut et al. 2009; Dennis 

et al. 2010), with starvation (Olive et al. 2003) and with growth (Hesslein et al. 1993). 

The latter two issues are relatively well understood, and the concern is that two animals 

eating the same food could differ in their δ15N due to differences in growth rates (because 

fast growing animals tend to have much lower ∆
15N). On the other hand, starving animals 
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tend to have higher δ15N and ∆15N than actively feeding animals because starving 

animals obtain a smaller amount of 14N from the diet to balance that lost via excretion 

(Olive et al. 2003). Despite the uncertainties with fractionation values, stable isotopes are 

still an incredibly useful tool, allowing researchers to track sources of carbon up the food 

chain (Fry and Sherr 1984). Thus, with caution, combined analysis of  δ15N and δ13C 

allows researchers to study both vertical (trophic positions) and horizontal (carbon 

sources) aspects of food web structure (e.g. Fry 1988; Hobson et al. 2002).  

The other dietary tracers used in this dissertation are fatty acids, which serve 

many functions in eukaryotes, including energy storage, cell membranes structure, 

immune responses, and hormone signaling. Similar to stable isotopes, fatty acids reflect a 

long-term, incorporated view of an animals' diet (Iverson 2009). Some fatty acids are 

essential for proper functioning of animals, including arachidonic acid (ARA, 20:4n-6), 

eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) (Arts et 

al. 2001; Kainz et al. 2004; Parrish 2009). Only algae and bacteria are capable of 

synthesizing the precursors of these essential fatty acids (linoleic acid (LIN), 18:2n-6, 

alpha-linoleic acid (ALA), 18:3n-3, Arts et al. 2001). Most marine fishes are thought to 

have limited ability to elongate ARA, EPA and DHA from LIN and ALA in amounts 

sufficient to meet their needs (Mourente and Tocher 1993). These fatty acids must 

therefore be obtained in the diet by marine consumers, and are useful as dietary indicators 

(Dalsgaard et al. 2003). Other fatty acids are useful for distinguishing between basal 

resources. For example, diatoms tend to be high in 16:1n-7 and bacteria are high in 

branched and odd-chain length FA (e.g. 15:0) (Søreide et al. 2008). 
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One major consideration with the interpretation of fatty acids as dietary indicators 

is that animals will modify dietary fatty acids to meet their specific needs (e.g. through 

chain elongation or shortening) (Cooper et al. 2006). However, it is widely accepted that 

the fatty acid profile of a consumer is greatly affected by the fatty acid profile of its diet 

(Iverson 2009) and fatty acids have been successfully applied to delineate the diet of 

marine consumers including zooplankton (Søreide et al. 2008), fish (Budge et al. 2002) 

and sharks (Schaufler et al. 2005).  

All samples for stable isotopes presented in this dissertation were stored at -20°C 

until analysis and treated with the same pre-analysis protocol (i.e. lipid extraction in 2:1 

chloroform: methanol) as previously described (McMeans et al. 2009). Only samples 

with high CaCO3 , like amphipods (e.g. Gammarus oceanicus) and snails (Littorina spp.), 

were acid washed prior to stable isotope analysis (using 1M HCl) (for details, see Chapter 

3). Stable isotopes were analyzed on a continuous-flow isotope ratio mass spectrometer 

(Delta V Advantage, Thermo Electron) at the Great Lakes Institute for Environmental 

Research, Windsor, Ontario. Fatty acid samples were stored at -80°C until analysis and 

were all separated using a Hewlett Packard 6890 GC coupled to a Flame Ionization 

Detector at the National Water Research Institute, Burlington, Ontario (see Chapter 2 for 

detailed analytical methods).  

STUDY SYSTEM 

 Sampling for this dissertation was conducted in Cumberland Sound, located on 

the east coast of Baffin Island, Nunavut, Canada. This is an appropriate test system for 

the research presented in this dissertation for several reasons. First, results should be 
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comparable to several previous arctic studies because fjords are a common feature of 

arctic regions (Hop et al. 2002; Svendsen et al. 2002; Hop et al. 2006; Wlodarska-

Kowalczuk et al. 2009). Summer water column primary production at sampling areas in 

Cumberland Sound (e.g. range July - August 2008 = 2.7-518.4 mg C m-2day-1, J. Brush et 

al., unpublished data) is similar to other locations in the Canadian arctic (Klein et al. 

2002). Further, common arctic fauna inhabit Cumberland Sound, from zooplankton like 

Calanus hyperboreus, to fishes like arctic charr (Salvelinus alpinus) and pinnipeds like 

the ringed seal (Pusa hispida). The ability to compare results from Cumberland Sound to 

other areas is important because much arctic marine research to date has been fragmented 

and regional and there is a call for researchers to draw similarities among arctic locations 

(Carmack and Wassmann 2006). The goal of a 'pan-arctic' view is the ability of 

researchers to make generalizations about how certain areas can be expected to change 

with climate warming (Carmack and Wassmann 2006). This dissertation should 

contribute to that goal because, in Chapter 6, data were compiled from throughout the 

arctic to assess the prevalence of biomass changes and diet switches between summer and 

winter.  

 Second, the eastern coast of Baffin Island is already experiencing changes 

associated with climate warming (Kahru et al. 2011) and there is an immediate need to 

structure food webs and identify how consumers are using resources during both 

productive and unproductive months. The final reason Cumberland Sound is an 

appropriate study system is logistical, but still important to the goal of this dissertation. A 

winter turbot (Reinhardtius hippoglossoides) fishery exists in Cumberland Sound that 

allowed access to winter communities without the use of an ice-breaker ship, which are 
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the most frequently used method to sample offshore arctic environments (e.g. Hobson et 

al. 2002). As a result, knowledge regarding inshore, coastal arctic food webs, especially 

in winter, is extremely limited. The ability to sample in generally the same location 

(within 30 km of land) during summer and winter provided a unique data set with which 

to explore a similar community in both summer and winter. 

 The areas sampled in Cumberland Sound were located directly below the arctic-

circle, but experience arctic conditions, and much colder temperatures than similar 

latitudes in the Norwegian Sea, for example, due to the influence of the Gulf Stream on 

the latter. Cumberland Sound is influenced by both Arctic (i.e. Baffin Island Current) and 

Atlantic (i.e. Greenland Current) water masses (Aitken and Gilbert 1989). Subsequently, 

the fauna of Cumberland Sound is of both Arctic and Atlantic origin (Aitken and Gilbert 

1989). Cumberland Sound is covered by sea ice cover from approximately November 

until June or July. Temperatures in surface summer waters are generally at least 3°C 

(Mathias and Keast 1996), but can decrease below -1.8°C in winter (Simonsen and Treble 

2003). Summer in this part of the world occurs in July and August, when waters are ice-

free and pelagic primary productivity is at its peak (Grainger 1971; Hsiao 1988, 1992). 

Winter occurs in December-March, when water column primary production (Hsiao 1988) 

and phytoplankton cell biomass (Hsiao 1992) are low or absent. 

 Five sampling trips were conducted: three during summer (August 21-27, 2007 

and August 10-15, 2008, August 10-17, 2009) and two during winter (April 10-11, 2008 

and April 4-8, 2009). Sampling was conducted during August and early April to capture 

resource use by consumers (inferred through stable isotopes and fatty acids) during 

summer and winter, respectively. Sampling for this dissertation was conducted within or 
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up to 30 km outside the mouth of Pangnirtung fjord, the location of the Inuit settlement of 

Pangnirtung. In summer, Pangnirtung fjord experiences freshwater inflow from River 

Duval, as well as from melting permafrost and glaciers upland, although the quantity of 

freshwater entering Pangnirtung fjord has not been quantified. Pangnirtung fjord 

experiences large tides, up to 7m, and wide (up to 600m) intertidal flats consisting of 

sand, gravel, boulders and large growths of the brown macroalgae Fucus characterize the 

shores of Pangnirtung fjord (Aitken et al. 1988).  

PREDICTIONS AND HYPOTHESES 

 Regarding the null and alternate hypotheses for this dissertation (Ho: patterns in a 

highly seasonal system = predicted patterns, Ha: patterns in a highly seasonal system ≠ 

predicted patterns), I expect that patterns in a highly seasonal system will deviate from 

those predicted by recent theory (see Figs. 1.1-1.3 for 'predicted patterns'). The rationale 

for this prediction is detailed in the following outline of each data chapter.  

Chapter2: Seasonal Patterns in Fatty Acids of Calanus hyperboreus (Copepoda, 
Calanoida) from Cumberland Sound, Baffin Island, Nunavut  (Marine Biology (2012) 
DOI 10.1007/s00227-012-1889-6)  
 I first explore seasonal variability (i.e. summer vs. winter) in fatty acids of an 

important arctic organism, the herbivorous copepod Calanus hyperboreus, over two 

consecutive years. C. hyperboreus forms a crucial link between phytoplankton and upper 

trophic levels and is directly eaten by many species (zooplankton to baleen whales) (Falk-

Petersen et al. 2007). Thus, prior to exploring the feeding behaviour of upper trophic 

level consumers, it was prudent to first explore how fatty acids varied in this key arctic 

consumer, both with season and between years. In this chapter, I will explore which fatty 

acids are altered by C. hyperboreus between summer and winter. This work will provide 
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important information about the consistency of fatty acids made available to upper 

trophic levels over two years, and whether the seasonal pattern in fatty acids of a key 

arctic herbivore is similar between two years with different times of ice break up (ice 

broke up earlier in 2007 than in 2008).  

Chapter 3: Coupling of macroalgal and phytoplankton energy pathways by consumers 
inhabiting a seasonally ice-covered fjord (anticipated submission date April 24, 2012 ) 

 Next, I ask the question: do arctic marine consumers sampled during the 

productive period couple two disparate resources in space, as predicted by recent food 

web theory (Fig. 1.1, Rooney et al. 2006). Specifically, I explore the importance of 

phytoplankton vs. macroalgae to invertebrates, teleosts, elasmobranchs and pinnipeds 

sampled during summer (August) in Cumberland Sound using stable isotopes and fatty 

acids. The hypotheses for this chapter are: 

Ho: Lower trophic levels will restrict their feeding to either phytoplankton or 

macroalgae, and upper trophic levels will consume prey from both resource 

compartments, evidenced by intermediate values of δ13C-derived % reliance on 

pelagic carbon and fatty acids (i.e. predicted pattern = observed pattern)  

Ha: Lower and upper trophic levels will have similar values of δ13C-derived % 

reliance on pelagic carbon and fatty acids, indicating little spatial resource coupling 

(i.e. predicted pattern ≠ observed pattern) 

The theoretical prediction is that lower trophic level consumers will partition resources in 

space (i.e. feed predominantly on either phytoplankton or macroalgae) and that upper 

trophic levels will couple these resources by feeding in both resource compartments (Fig. 

1.1). Due to the dominance of phytoplankton in arctic food webs (e.g. Renaud et al. 

2011), I expect that the structure of an arctic food web will deviate from this prediction, 
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and that both lower and upper trophic level consumers will depend on carbon that 

originated from phytoplankton (i.e. low coupling in space, Fig. 1.1.). This result would 

support the alternate hypothesis of this dissertation that observed patterns in an arctic 

food web deviate from those predicted by recent theory. 

Chapter 4: Similarity between predator and prey fatty acid profiles is tissue dependent in 
Greenland sharks (Somniosus microcephalus) (Submitted to the Journal of Experimental 
Marine Biology and Ecology, February 1, 2012, manuscript number: JEMBE-D-12-
00056) 

 Because I plan to use fatty acids of multiple tissues with different turnover times 

to investigate individual-level feeding behaviour of Greenland sharks, I first need to 

assess: 1) the extent that Greenland sharks modify fatty acids from those obtained in diet 

and 2) which shark tissues provided the most accurate view of diet. To answer these 

question, in Chapter 4, I compare Greenland shark muscle, liver and blood plasma fatty 

acids to values for dominant prey (based on stomach contents). I predict that shark liver 

will be the most modified by the shark and differ the most from prey fatty acids due to 

the many functions of liver in shark fatty acid metabolism (e.g. energy storage and 

generation, ketone body biosynthesis, buoyancy, Ballantyne 1997).  

Chapter 5:Iindividual specialization in Greenland sharks (Somniosus microcephalus) 

 After exploring whether arctic consumers couple resources in space at the 

population level (Chapter 3), I next apply the methodology established in Chapter 4 to 

explore the diet of an upper trophic level consumer, the Greenland shark, in more detail at 

the individual level. Whatever the resource use pattern identified in Chapter 3, it is now 

important to establish whether individual-level resource use reflects this pattern observed 

at the population level (i.e. whether consumers are individual specialists or individual 
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generalists) and whether this feeding behaviour remains constant through time. In 

Chapter 5, I use the range of 22:5n-3 proportions among each Greenland shark's muscle, 

liver and plasma to infer whether a shark has been feeding on consistent (i.e. similar fatty 

acid values among tissues) or different diet items over time (i.e. different values among 

tissues). I use a linear mixed-effects models to calculate the variability within individuals 

(WIC, within-individual component) and between individuals (BIC, between-individual 

component) and the total variability exhibited by the population (TNW, total niche 

width), which is equal to WIC + BIC (Fig. 1.2). High individual specialization would be 

indicated by low WIC relative to TNW (Fig. 1.2), whereas low individual specialization 

would be indicated by WIC that is a large proportion of the TNW (Bolnick et al. 2003). I 

test the following hypotheses in Chapter 5: 

Ho: Values of muscle, plasma and liver fatty acids are similar within individuals (i.e. 

high individual specialization) and do not vary with time 

Ha1: Values of muscle, plasma and liver fatty acids are different within individuals (i.e. 

no individual specialization) and do not vary with time 

Ha2: The similarity between muscle, plasma and liver fatty acids within individuals 

varies with time (i.e. the extent of individual specialization varies with time) 

No abundance data exist for Greenland sharks or their prey in Cumberland Sound, so it is 

difficult to speculate regarding the extent of intra-specific competition in this population. 

However, because the Greenland shark is the only shark and large predator of both fish 

and marine mammals in Cumberland Sound, one would expect lower inter- and higher 

intra-specific competition; the diversifying 'recipe' for individual specialization 

(Svanbäck and Bolnick 2005). Thus, the theoretical prediction is high individual 
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specialization that is constant (does not vary with time, Fig. 1.2, Ho). However, 

Greenland sharks are considered generalists based on a wide range of prey consumed 

(MacNeil et al. 2012), although they are likely capable of focusing on a subset of 

resources when they are abundant. I therefore expect that if individual resource 

specialization is identified, that its extent will not remain constant through time (i.e.Ha2, 

Fig. 1.2). Low and or variable individual specialization would support the alternate 

hypothesis of this dissertation that observed patterns in an arctic food web deviate from 

predicted patterns (i.e. Fig. 1.2).  

Chapter 6: Temporal resource asynchrony and seasonal diet switching in arctic food 
webs: comparing empirical patterns with theoretical predictions 
 After exploring spatial coupling of resources during one season (summer, Chapter 

3), and exploring the diet of a top trophic level consumer at the individual level (during 

summer and winter of two years, Chapter 5), I now explore patterns in overall food web 

structure over multiple seasons. Stable isotope and fatty acid data sampled from 

Cumberland Sound consumers during summer and winter, combined with a literature 

review, will be used to explore seasonal changes in: 1) basal resource availability, 2) 

changes in consumer biomass and 3) seasonal diet switching by consumers. On the one 

hand, the ability of consumers to switch their diet with season seems obvious and 

expected (Weslawski et al. 1991). However, several studies report that biological activity 

during arctic winter is much higher than previously thought, and that many species adopt 

a 'business as usual strategy', feeding as opportunistic generalists all year (Werner and 

Auel 2005; Legezynska et al. 2012). Further, marine food webs in general (Isaacs 1973) 

and polar food webs specifically (Norkko et al. 2007; Renaud et al. 2011) have been 

viewed as 'unstructured' due to the high prevalence of omnivory and detritivory, which 
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could lead one to expect a general lack of structure. Although many studies have 

performed detailed studies of arctic food web structure (e.g. Hobson et al. 2002; Søreide 

et al. 2008; Dunton et al. 2012), this is the first attempt that I am aware to unite observed 

structures in arctic food webs with recent structures that are considered important for 

persistence. To do so, I will test the following hypothesis (Fig. 1.3):  

Ho: observed pattern agrees with theoretical prediction 

 Ha: observed pattern deviates from theoretical prediction) 

 If consumers switch their diet by exploiting abundant and abandoning declining 

resources between summer and winter, as inferred from changes in their stable isotopes 

and fatty acids between season (i.e. between summer and winter), this would support the 

null hypothesis (Fig. 1.3, Ho). Alternatively, a lack of seasonal pattern (e.g. similar stable 

isotopes or fatty acids of consumers between season) would indicate that the observed 

pattern deviates from the predicted pattern, which supports the alternate hypothesis (Fig. 

1.3, Ha). Based on the known prevalence of omnivory and opportunistic feeding by arctic 

consumers (e.g. Dunton et al. 2012; Renaud et al. 2011; Feder et al. 2011), with the 

exception of herbivorous copepods (Chapter 2, Falk-Petersen et al. 2009), I expect that 

consumers will not switch their diet in response to temporal resource variability and will 

feed as opportunists all year (i.e. Ha), which would support the alternate hypothesis of 

this dissertation that patterns in arctic food webs deviate from theoretical predictions.  

 Uniting observed patterns with predictions from recent theory (i.e. Figs. 1.1-1.3) 

will increase understanding, not just of variable environments, but of the mechanisms that 

govern food web structure in general.  



24 

REFERENCES 

Aitken AE, Gilbert R (1989) Holocene nearshore environments and sea-level history in Pangnirtung fjord, 

Baffin Island, NWT, Canada. Arct Alp Res 21 (1):34-44 

Aitken AE, Risk MJ, Howard JD (1988) Animal-sediment relationships on a subarctic intertidal flat, 

Pangnirtung Fiord, Baffin Island, Canada. J Sediment Res 58 (6):969 

Akin S, Winemiller KO (2006) Seasonal variation in food web composition and structure in a temperate 

tidal estuary. Estuar Coast 29 (4):552-567 

Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago 

Press, Chicago 

Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 

14 (9):948-958 

Arts MT, Ackman RG, Holub BJ (2001) "Essential fatty acids" in aquatic ecosystems: a crucial link 

between diet and human health and evolution. Can J Fish Aqu Sci 58 (1):122-137 

Ballantyne JS (1997) Jaws: the inside story. The metabolism of elasmobranch fishes. Comp Biochem 

Physiol -B 118 (4):703-742 

Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, 

Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. 

Trends Ecol Evol 26 (4):183-192 

Bolnick DI, Svanback R, Araujo MS, Persson L (2007) Comparative support for the niche variation 

hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci 

USA 104 (24):10075-10079 

Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of 

individuals: Incidence and implications of individual specialization. Am Nat 161 (1):1-28 

Briand F, Cohen JE (1984) Community food webs have scale-invariant structure. Nature 307:264-267 

Budge SM, Iverson SJ, Bowen WD, Ackman RG (2002) Among-and within-species variability in fatty acid 

signatures of marine fish and invertebrates on the Scotian Shelf, Georges Bank, and southern Gulf 

of St. Lawrence. Can J Fish Aqu Sci 59 (5):886-898 

Carmack E, Wassmann P (2006) Food webs and physical-biological coupling on pan-Arctic shelves: 

Unifying concepts and comprehensive perspectives. Prog Oceanogr 71 (2-4):446-477 

Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (∆15N and ∆13C): the effect of 

diet isotopic values and applications for diet reconstruction. J Appl Ecol 46 (2):443-453 

Chesson P, Huntly N (1997) The roles of harsh and fluctuating conditions in the dynamics of ecological 

communities. Am Nat 150 (5):519-553 

Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar 

Biol 21:341-453 

Cohen JE, Briand F (1984) Trophic links of community food webs. Proc Natl Acad Sci USA 81:4105-4109 



25 

Cooper MH, Iverson SJ, Rouvinen-Watt K (2006) Metabolism of dietary cetoleic acid (22: 1n-11) in mink 

(Mustela vison) and gray seals (Halichoerus grypus) studied using radiolabeled fatty acids. 

Physiol Biochem Zool 79 (4):820-829 

Dalsgaard J, John MS, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the 

pelagic marine environment. Adv Mar Biol 46:225-340 

Dennis CA, MacNeil MA, Rosati JY, Pitcher TE, Fisk AT (2010) Diet discrimination factors are inversely 

related to ∆15N and ∆13C values of food for fish under controlled conditions. Rapid Commun Mass 

Spectrom 24 (24):3515-3520 

Dunton KH, Schell DM (1987) Dependence of consumers on macroalgal (Laminaria solidungula) carbon 

in an arctic kelp community: 13 C evidence. Mar Biol 93 (4):615-625 

Dunton KH, Schonberg SV, Cooper LW (2012) Food web structure of the Alaskan nearshore shelf and 

estuarine lagoons of the Beaufort Sea. Estuar Coast:1-20 

Elton CS (1927) Animal Ecology. MacMillan, New York, USA 

Estes J, Riedman M, Staedler M, Tinker M, Lyon B (2003) Individual variation in prey selection by sea 

otters: patterns, causes and implications. J Anim Ecol 72 (1):144-155 

Falk-Petersen S, Mayzaud P, Kattner G, Sargent JR (2009) Lipids and life strategy of Arctic Calanus. Mar 

Biol Res 5 (1):18-39 

Falk-Petersen S, Pavlov V, Timofeev S, Sargent JR (2007) Climate variability and possible effects on arctic 

food chains: The role of Calanus. In: Ørbæk JB, Kallenborn R, Tombre I, Hegseth EN, Falk-

Petersen S, Hoel AH (eds) Arctic Alpine Ecosystems and People in a Changing Environment. 

Springer-Verlag, Heidelberg, pp 147-166 

Feder HM, Iken K, Blanchard AL, Jewett SC, Schonberg S (2011) Benthic food web structure in the 

southeastern Chukchi Sea: an assessment using δ13C and δ15 N analyses. Polar Biol 34 (4):521-532 

Forest A, Sampei M, Makabe R, Sasaki H, Barber DG, Gratton Y, Wassmann P, Fortier L (2008) The 

annual cycle of particulate organic carbon export in Franklin Bay (Canadian Arctic): 

Environmental control and food web implications. J Geophys Res 113:C03S05 

France RL (1995) Carbon-13 enrichment in benthic compared to planktonic algae: Foodweb implications. 

Mar Ecol Prog Ser 124 (1):307-312 

Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol 

Oceanogr 33 (5):1182-1190 

Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater 

ecosystems. Contrib Mar Sci 27:13-47 

Grainger EH (1971) Biological oceanographic observations in Frobisher Bay I. Physical, nutrient and 

primary production data, 1967-1971. Fisheries Research Board of Canada Technical Report 265:1-

75 

Grimm V, Wissel C (1997) Babel, or the ecological stability discussions: an inventory and analysis of 

terminology and a guide for avoiding confusion. Oecologia 109 (3):323-334 



26 

Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. 

Am Nat 94 (879):421 

Hesslein RH, Hallard KA, Ramlal P (1993) Replacement of sulfur, carbon, and nitrogen in tissue of 

growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, 

and δ15N. Can J Fish Aqu Sci 50 (10):2071-2076 

Hillebrand H (2004) Strength, slope and variability of marine latitudinal gradients. Mar Ecol Prog Ser 

273:251-267 

Hobson KA, Fisk AT, Karnovsky N, Holst M, Gagnon JM, Fortier M (2002) A stable isotope (δ13C, δ15N) 

model for the North Water food web: implications for evaluating trophodynamics and the flow of 

energy and contaminants. Deep-Sea Res (2 Top Stud Oceanogr) 49 (22-23):5131-5150 

Hobson KA, Welch HE (1992) Determination of trophic relationships within a high arctic marine food web 

using δ13C and δ15N analysis. Mar Ecol Prog Ser 84 (1):9-18 

Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, SÃ¸reide JE (2006) Physical 

and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog 

Oceanogr 71 (2-4):182-231 

Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen 

B, Wlodarska Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey 

RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall MA, Wängberg S-Å, Bischof K, 

Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S 

(2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21 (1):167-208 

Hsiao SIC (1988) Spatial and seasonal variations in primary production of sea ice microalgae and 

phytoplankton in Frobisher Bay, Arctic Canada. Mar Ecol Prog Ser 44:275-285 

Hsiao SIC (1992) Dynamics of ice algae and phytoplankton in Frobisher Bay. Polar Biol 12 (6):645-651 

Isaacs JD (1973) Potential trophic biomasses and trace-substance concentrations in unstructured marine 

food webs. Mar Biol 22 (2):97-104 

Iverson SJ (2009) Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative 

determination. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids in Aquatic Ecosystems. Springer, 

New York, pp 281-308 

Johnson JC, Luczkovich JJ, Borgatti SP, Snijders TAB (2009) Using social network analysis tools in 

ecology: Markov process transition models applied to the seasonal trophic network dynamics of 

the Chesapeake Bay. Ecol Model 220 (22):3133-3140 

Kahru M, Brotas V, Manzano-Sarabia M, Mitchell B (2011) Are phytoplankton blooms occurring earlier in 

the Arctic? Global Change Biol 17:1733-1739 

Kainz M, Arts MT, Mazumder A (2004) Essential fatty acids in the planktonic food web and their 

ecological role for higher trophic levels. Limnol Oceanogr 49 (5):1784-1793 



27 

Klein B, LeBlanc B, Mei ZP, Beret R, Michaud J, Mundy CJ, von Quillfeldt CH, Garneau MÈ, Roy S, 

Gratton Y (2002) Phytoplankton biomass, production and potential export in the North Water. 

Deep-Sea Res (2 Top Stud Oceanogr) 49 (22-23):4983-5002 

Kӓkelӓ R, Furness R, Kahle S, Becker P, Kӓkelӓ A (2009) Fatty acid signatures in seabird plasma are a 

complex function of diet composition: a captive feeding trial with herring gulls. Funct Ecol 23 

(1):141-149 

Legezynska J, Kedra M, Walkusz W (2012) When season does not matter: summer and winter trophic 

ecology of Arctic amphipods. Hydrobiologia 684:189-214 

Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399-418 

MacArthur R (1955) Fluctuations of animal populations and a measure of community stability. Ecology 36 

(3):533-536 

MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat:603-609 

MacNeil MA, Drouillard KG, Fisk AT (2006) Variable uptake and elimination of stable nitrogen isotopes 

between tissues in fish. Can J Fish Aqu Sci 63 (2):345-353 

MacNeil MA, Graham NAJ, Cinner JE, Dulvy NK, Loring PA, Jennings S, Polunin NVC, Fisk AT, 

McClanahan TR (2010) Transitional states in marine fisheries: adapting to predicted global 

change. Philos Trans R Soc Lond, Ser B 365 (1558):3753-3763 

MacNeil MA, McMeans BC, Hussey N, Vecsei P, Svavarsson J, Kovacs KM, Lydersen C, Treble MA, 

Skomal G, Ramsey M, Fisk AT (2012) Biology of the Greenland shark Somniosus microcephalus 

Bloch and Schneider, 1801. J Fish Biol. doi:10.1111/j.1095-8649.2012.03257.x 

Mathias J, Keast M (1996) Status of the Greenland halibut (Reinhardtius hippoglossoides) fishery in 

Cumberland Sound, Baffin Island 1987-95. NAFO SCR documents 96/71:20 p 

Matich P, Heithaus MR, Layman CA (2011) Contrasting patterns of individual specialization and trophic 

coupling in two marine apex predators. J Anim Ecol 80 (1):294-305 

May RM (1973) Stability and complexity in model ecosystems. Monographs in population biology. 

Princeton University Press, Princeton, NJ 

McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395 

(6704):794-798 

McCann KS, Rasmussen JB, Umbanhowar J, Humphries M (2005) The role of space, time, and variability 

in food web dynamics. In: de Ruiter P, Wolters V, Moore JC (eds) Dynamic food webs: 

multispecies assemblages, ecosystem development, and environmental change. Academic Press, 

Boston, pp 56-70 

McCann KS, Rooney N (2009) The more food webs change, the more they stay the same. Philos Trans R 

Soc Lond, Ser B 364 (1524):1789 

McMeans BC, Olin JA, Benz GW (2009) Stable-isotope comparisons between embryos and mothers of a 

placentatrophic shark species. J Fish Biol 75 (10):2464-2474 



28 

Menge BA, Sutherland JP (1976) Species diversity gradients: Synthesis of the roles of predation, 

competition, and temporal heterogeneity. Am Nat 110 (973):351 

Mourente G, Tocher DR (1993) Incorporation and metabolism of 14 C-labelled polyunsaturated fatty acids 

in juvenile gilthead sea bream Sparus aurata L. in vivo. Fish Physiol Biochem 10 (6):443-453 

Norkko A, Thrush S, Cummings V, Gibbs M, Andrew N, Norkko J, Schwarz AM (2007) Trophic structure 

of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88 

(11):2810-2820 

Olive PJW, Pinnegar JK, Polunin NVC, Richards G, Welch R (2003) Isotope trophic step fractionation: a 

dynamic equilibrium model. J Anim Ecol 72 (4):608-617 

Paine RT (1980) Food webs: linkage, interaction strength and community infrastructure. J Anim Ecol 49 

(3):667-685 

Paine RT (1988) Road Maps of Interactions or Grist for Theoretical Development? Ecology 69 (6):1648-

1654 

Parrish CC (2009) Essential fatty acids in aquatic food webs. In: Arts MT, Brett MT, Kainz MJ (eds) Lipids 

in Aquatic Ecosystems. Springer, New York, pp 309-326 

Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst:293-320 

Pimm SL (1982) Food webs. Chapman & Hall, London 

Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350:669-674 

Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Am 

Nat:123-155 

Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the 

dynamics of spatially subsidized food webs. Annu Rev Ecol Syst:289-316 

Polis GA, Holt RD, Menge BA, Winemiller KO (1996) Time, space, and life history: influences on food 

webs. Food webs: integration of patterns and dynamics Chapman and Hall, New York, New York, 

USA:435-460 

Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147 (5):813-846 

Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. 

Ecology 83 (3):703-718 

Renaud PE, Tessmann M, Evenset A, Christensen GN (2011) Benthic food-web structure of an Arctic fjord 

(Kongsfjorden, Svalbard). Mar Biol Res 7 (1):13-26 

Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food 

webs. Nature 442 (7100):265-269 

Schaufler L, Heintz R, Sigler M, Hulbert L (2005) Fatty acid composition of sleeper shark (Somniosus 

pacificus) liver and muscle reveals nutritional dependence on planktivores. ICES CM/ N:05 

Simonsen CS, Treble MA (2003) Tagging mortality of Greenland halibut Reinhardtius hippoglossoides 

(Walbaum). J Northwest Atl Fish Sci 31:373 p 



29 

Søreide JE, Falk-Petersen S, Hegseth EN, Hop H, Carroll ML, Hobson KA, Blachowiak-Samolyk K (2008) 

Seasonal feeding strategies of Calanus in the high-Arctic Svalbard region. Deep-Sea Res (2 Top 

Stud Oceanogr) 55 (20-21):2225-2244 

Søreide JE, Hop H, Carroll ML, Falk-Petersen S, Hegseth EN (2006) Seasonal food web structures and 

sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-source 

food web model. Prog Oceanogr 71 (1):59-87 

Svanbäck R, Bolnick DI (2005) Intraspecific competition affects the strength of individual specialization: 

an optimal diet theory method. Evol Ecol Res 7 (7):993-1012 

Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, 

Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, 

Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord 

system in Svalbard. Polar Res 21 (1):133-166 

Vadeboncoeur Y, McCann KS, Zanden MJV, Rasmussen JB (2005) Effects of multi-chain omnivory on the 

strength of trophic control in lakes. Ecosystems 8 (6):682-693 

Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of 

aquatic consumers. Ecology 80 (4):1395-1404 

Walsh JE (2008) Climate of the Arctic marine environment. Ecol Appl 18 (sp2):3-22 

Wassmann P, Duarte CM, Agustí SS, M.K. (2011) Footprints of climate change in the Arctic marine 

ecosystem. Global Change Biol 17 (2):1235-1249 

Werner I, Auel H (2005) Seasonal variability in abundance, respiration and lipid composition of Arctic 

under-ice amphipods. Mar Ecol Prog Ser 292:251-262 

Weslawski J, Kwasniewski S, Wiktor J (1991) Winter in a Svalbard Fiord Ecosystem. Arctic 44 (2):115-

123 

Weslawski JM, Kendall MA, Wlodarska-Kowalczuk M, Iken K, K dra M, Legezynska J, Sejr MK (2011) 

Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and 

predictions. Mar Biodiversity:1-15 

Winemiller KO (1990) Spatial and temporal variation in tropical fish trophic networks. Ecol Monogr 60 

(3):331-367 

Wlodarska-Kowalczuk M, Kuklinski P, Ronowicz M, Legezynska J, Gromisz S (2009) Assessing species 

richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, Svalbard). 

Polar Biol 32 (6):897-905. doi:10.1007/s00300-009-0590-9 

Worm B, Duffy JE (2003) Biodiversity, productivity and stability in real food webs. Trends in Ecology & 

Evolution 18 (12):628-632 

Yodzis P (1981) The stability of real ecosystems. Nature 289 (5799):674-676



30 

Fig. 1.1 The first structure investigated in the present dissertation is spatial coupling of asynchronous resources. The 

conceptual model for this structure (left panel) shows the coupling of two asynchronous resources in space (A and B) by a 

hypothetical consumer (C). The null hypothesis (Ho, middle panel) is that lower trophic levels will restrict their feeding to one 

of two 'resource compartments' (e.g. phytoplankton and macroalgae), and upper trophic levels will couple these resource 

compartments. One possible alternate hypothesis (Ha, right panel) is that lower and upper trophic level consumers will feed 

predominantly on carbon originating from phytoplankton, such that no resource compartments at lower trophic levels and/or 

coupling by upper trophic levels is apparent. 
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Fig. 1.2. The second food web structure investigated in this dissertation is the extent of individual diet specialization (IS) (in 

Greenland sharks, Somniosus microcephalus). The conceptual model (left panel, redrawn from Bolnick et al. 2003, Amer. Nat. 

161(1), 1-28) shows a population of consumers whose total niche width (TNW) is explained by high IS, i.e. high between-

individual variation (BIC) and low within-individual variation (WIC). The null hypothesis (Ho, middle panel) is high IS 

(evidenced by small ranges of fatty acid values in each shark) that does not change with time. The alternate hypothesis (Ha, 

right panel) is that the extent of IS will change with time (season), evidenced by wide ranges of fatty acids in a given shark in 

some seasons (i.e. low IS) and small ranges (i.e. high IS) in sharks sampled during other seasons.  
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Fig. 1.3. The third food web structure investigated in the present dissertation is temporal coupling of asynchronous resources. 

The conceptual model (left panel) shows a hypothetical consumer (C) coupling two temporally asynchronous resources (A and 

B). The null hypothesis (Ho, middle panel) is that consumers will switch their diet with season to exploit resources as they vary 

through time (here, a switch from high reliance on phytoplankton in summer to greater reliance on alternate carbon sources, 

e.g. detritus, in winter). The alternate hypothesis (Ha, right panel) is that consumers will feed on similar prey all year and will 

not switch their diet.  
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CHAPTER 2 

SEASONAL PATTERNS IN FATTY ACIDS OF CALANUS HYPERBOREUS 

(COPEPODA, CALANOIDA) FROM CUMBERLAND SOUND, BAFFIN ISLAND, 

NUNAVUT 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

McMeans, BC, Arts, MT, Rush, S, Fisk, AT (2012) Seasonal patterns in fatty acids of 
Calanus hyperboreus (Copepoda, Calanoida) from Cumberland Sound, Baffin Island, 
Nunavut. Marine Biology DOI 10.1007/s00227-012-1889-6123 



34 

INTRODUCTION 

 Polar oceans are characterized by pronounced seasonal variability in temperature, 

light and salinity (Clarke 1983). This inconstancy in physico-chemical conditions drives 

strong seasonal variability in available food resources, which, in turn, constitutes one of 

the biggest challenges faced by polar organisms (Clarke 1983). Calanus hyperboreus 

(Krøyer, 1838) is a predominantly herbivorous marine copepod (Falk-Petersen et al. 

1987; Stevens et al. 2004b) that inhabits seasonally ice-covered waters in the Atlantic 

Arctic and sub-Arctic (Conover 1988). The ephemeral nature of phytoplankton 

availability in Arctic systems coupled with low water temperatures (low basal metabolic 

rates) promote most arctic copepods to accumulate higher amounts of lipids than 

temperate or tropical copepods (Lee and Hirota 1973). 

 Lipids are stored by arctic Calanus spp. predominantly as wax esters (Kattner and 

Hagen 2009), which consist of a fatty acid esterified to a fatty alcohol, and can account 

for > 91% of total lipids in C. hyperboreus (Lee 1974). Certain PUFA like 

eicosapentaenoic acid (EPA, 20:5n-3), arachidonic acid (ARA, 20:4n-6) and 

docosohexaenoic acid (DHA, 22:6n-3) are required for somatic growth and membrane 

functioning of animals and invertebrates (Parrish 2009). However, it is generally accepted 

that these 'essential' fatty acids cannot be synthesized from their fatty acid precursors (i.e. 

alpha-linoleic acid (ALA, 18:3n-3) and linoleic acid (LIN, 18:2n-6) by animals in 

amounts sufficient to meet their needs, and must therefore be acquired in the diet (Parrish 

2009). Aquatic algae are the major source of pre-formed, long-chain (≥ 20 carbons) n-3 

and n-6 PUFA (Arts et al. 2001; Gladyshev et al. 2009). Thus, as a main grazer of 

primary production in marine Arctic ecosystems, C. hyperboreus serves as both a source 
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of energy and essential fatty acids for higher trophic levels (Søreide et al. 2008; Kattner 

and Hagen 2009). Knowledge concerning food quality obtained by C. hyperboreus during 

summer, with regard to essential fatty acid acquisition, is therefore important for 

identifying potential risks to C. hyperboreus populations, and, by extension, to the fish, 

birds and mammals that ultimately depend on the fatty acids that C. hyperboreus harvests 

from the oceans. 

 C. hyperboreus feeds only during the productive spring and summer months when 

phytoplankton are available, and synthesizes and stores large amounts of the long chain 

MUFAs 20:1n-9 and 22:1n-11 in their wax esters (Albers et al. 1996; Graeve et al. 2005). 

C. hyperboreus enters diapause over the unproductive winter, during which time the 

copepods do not feed and rely entirely on store lipids to mature and reproduce (Conover 

and Siferd 1993; Falk-Petersen et al. 2009). Presumably, C. hyperboreus relies on both 

dietary PUFA and biosynthesized MUFA to survive the winter and successfully 

reproduce (Sargent and Falk-Petersen 1988). However, very few studies to date have 

explored how C. hyperboreus alters specific fatty acids between productive summer and 

unproductive winter months in ice-covered seas (but see Lee 1974; Søreide et al. 2008). 

Seasonal fatty acid data are especially needed for the Canadian arctic because these areas 

are experiencing decreases in both the extent and duration of ice-cover, and consequently, 

earlier timing of maximum annual phytoplankton biomass (Kahru et al. 2011), which 

could affect Calanus populations (Søreide et al. 2010). To the best of our knowledge, 

however, no such data exist. 

 Quantifying dynamics in fatty acids over multiple seasons across consecutive 

years could provide important information on the seasonal lipid strategy of C. 
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hyperboreus, including identifying which lipids are likely important for their survival. 

These findings could become important for monitoring how longer open-water periods 

and earlier phytoplankton growth influence the quality and quantity of lipids accumulated 

by C. hyperboreus annually. Further, it is imperative to identify how C. hyperboreus  

fatty acid profiles change over time (i.e. with seasons and years), because this 

information contributes important baseline data for future studies focused on the feeding 

ecology of higher trophic level organisms (Brett et al. 2009). Here we quantify fatty acid 

profiles of C. hyperboreus from Cumberland Sound, Baffin Island, Canada during 

summer (i.e. August, open-water) and winter (i.e. April, ice-cover) over two successive 

years. We suggest that such information can eventually be used to better assess and 

monitor the cumulative effects of annual variability in physical forcing variables 

(temperature, light, nutrients) on copepods and their consumers in the context of climate 

change. 

MATERIALS AND METHODS 

Study site 

 Copepod sampling was conducted as part of a larger study in Cumberland Sound,  

and occurred within 30 km southwest (65°55'02"N, 66°27'30"W) and 30 km northwest 

(66°12'41"N, 66°35'35" W) of the mouth of Pangnirtung Fjord (66°4'43"N, 65°57'45" W, 

Fig. 2.1). The southeast coast of Baffin Island is influenced by both Arctic (Baffin Island 

Current) and Atlantic  water masses (Greenland Current; Dunbar 1951), and 

consequently, the fauna of Cumberland Sound is of both Arctic and Atlantic origin 

(Aitken and Gilbert 1989). Cumberland Sound is typically ice-covered from November 

until approximately June. Temperatures in Cumberland Sound typically exceed 3°C in 
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surface waters during summer (Mathias and Keast 1996) but decline to -1.8°C in winter, 

when the entire water column can reach temperatures near 0°C (Simonsen and Treble 

2003). Details on the progression of summer phytoplankton growth do not exist for 

Cumberland Sound, but in Frobisher Bay, a fjord also on the southeast coast of Baffin 

Island and ~3 degrees south of Cumberland Sound, primary productivity is typically 

highest in July and August, with sharp declines in September (Grainger 1971). 

Ice-coverage and chlorophyll a 

 Satellite data were accessed through the National Oceanographic Atmospheric 

Administration's Environmental Research Division's Data Access Program to determine 

the approximate dates of ice break-up (dataset title: Ice Coverage, Aqua AMSR-E, Global 

(1 Day Composite), Cavalieri et al. 2004, updated daily) and maximum surface 

chlorophyll a (dataset title: Chlorophyll-a, Aqua MODIS, NPP, Global, Science Quality 

(8 Day Composite), O'Reilly et al. 2000) in Cumberland Sound during the summers of 

2007 and 2008 (Fig. 2.2). Satellite ice coverage data are daily averages and chlorophyll a 

data are 8 d averages. 

Copepod sampling  

 Calanus hyperboreus were collected during four sampling trips: during open-

water in August 21-27, 2007 and August 10-15, 2008 and during ice-cover in April 10-

11, 2008 and April 4-8, 2009. Previous researchers working in southeastern Baffin Island 

waters (i.e. Frobisher Bay) have referred to winter as occurring in December-March, 

spring from April-June and summer from July-August (Hsiao 1988, 1992). These 

designations are somewhat arbitrary but are useful for referring to the general onset of ice 

algae (late spring) and phytoplankton production (summer) in this part of the world, with 
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winter referring to a time of low water column primary production (Hsiao 1988) and 

phytoplankton cell biomass (Hsiao 1992). Considering a turnover time of 11 d for fatty 

acids in C. hyperboreus (Graeve et al. 2005), April samples reflect activity occurring in 

late March, and these samples will hereafter be referred to as 'winter.' August samples 

reflect activity in mid-early August and will hereafter be referred to as 'summer.' The 

rationale chosen sampling times was to capture the signature of C. hyperboreus after they 

incorporated the signature of summer phytoplankton growth and after the winter low 

primary production period. 

 All C. hyperboreus were collected using a 243-µm plankton net (Wildlife Supply 

Company®, Buffalo, New York) by performing both surface horizontal tows and vertical 

hauls in the summer, and vertical hauls through holes cut in the sea ice during winter. The 

maximum depth of sampling sites was ~400 m, and vertical hauls were conducted down 

to near-bottom depth. For all samples, the contents of each plankton tow were first rinsed 

into buckets filled with seawater. The samples were then poured through a 2-mm sieve 

fitted on top of a 0.5-mm sieve (both Fieldmaster®). Individuals were gently removed 

from the sieves using tweezers. Approximately 10 C. hyperboreus were pooled for each 

fatty acid sample, placed in cryogenic vials immediately frozen at -80°C in liquid 

nitrogen, and kept at -80°C until analysis. Calanus hyperboreus samples consisted of 

adult females (AF), and stage IV and V copepodites based on prosome length (Hirche et 

al. 1994) measured on type specimens. One exception is the two samples from April 2009 

that consisted entirely of AF. 

Fatty acid analysis 
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 C. hyperboreus samples were freeze dried (48 h) and weighed to the nearest 

microgram (Sartorious ME5 microbalance). Lipids were extracted from each sample (dry 

weight of samples: range =12.11-44.33 mg, mean ±SD =34.79±9.02 mg) by 

homogenizing in 2 mL of 2:1 (v/v) chloroform:methanol (C:M) (Folch et al. 1957). The 

lipid extract was adjusted to 8 mL with  2:1 C:M, 1.6 mL of a 0.9% NaCl in water 

solution was added, the phases were mixed and centrifuged (2000 rpm at 4°C) and the 

upper aqueous layer was removed. The solvent layer was evaporated under nitrogen gas, 

re-dissolved in 2 mL of 2:1 C:M and percent total lipid (on a dry weight tissue basis) was 

determined gravimetrically. Fatty acid methyl esters were generated by adding sulphuric 

acid in methanol (1:100 mixture) to the vials, flushing the headspace with nitrogen and 

incubating (16 h) at 50ºC in a water bath. After the samples cooled, potassium hydrogen 

carbonate, isohexane:diethyl ether (1:1) and butylated hydroxy toluene (0.01%) were 

added, and the vials were vortexed and centrifuged. The upper organic layer was 

transferred to another centrifuge tube; isohexane:diethyl ether (1:1) was added to the 

original tube which was then shaken, vortexed, and centrifuged. FAME were evaporated 

under nitrogen, dissolved in hexane, transferred to amber glass GC vials and separated 

using a Hewlett Packard 6890 GC (splitless injection, column = Supelco (SP-2560 

column) 100 m X 0.25 mm ID X 0.20 µm thick film). Fatty acids were identified using a 

37-component fatty acid standard (Supelco 47885-U) added with methyl stearidonate 

(Fluka, 43959), 13-eicosenoic acid methyl ester (Sigma E3512), 9-eicosenoic acid methyl 

ester (Indofine Chemical, 20-2001-1), 16-docosatetraenoic acid methyl ester (Sigma 

D3534) and 19-docosapentaenoic acid methyl ester (Supelco, 47563-U). Identification of 

11-docosenoic acid methyl was accomplished via a Triple Quadrupole GC/MS (Agilent 
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7890A with Agilent 7000 mass detector) and confirmed by comparing the mass spectrum 

to the American Oil Chemists’ Society Lipid Library 

(http://lipidlibrary.aocs.org/index.html). In the present study, "∑SAFA" is used to 

indicate the sum of all fatty acids with zero double bonds, "∑MUFA" indicates the sum 

of all fatty acids with one double bond, and "∑PUFA" indicates the sum of all fatty acids 

with ≥ 2 double bonds. 

Data Analysis 

 C. hyperboreus fatty acids were expressed as both µg fatty acid mg dry tissue-1 

(abbreviated here as µg mg-1) and relative proportions (individual fatty acid ∑ fatty acids-

1, expressed as a %). Statistical analyses were performed primarily on proportional data, 

with the exception of analysis of variance (ANOVA) and Tukey's post hoc tests 

performed on total fatty acids (∑µg fatty acids mg-1) and unsaturation index (∑(µg fatty 

acid mg -1*number of double bonds)). 'Summary' fatty acid proportions (i.e. ∑n-3 and 

∑n-6 PUFAs, ∑SAFA, ∑MUFA and ∑PUFA) and % lipid were also compared among 

sampling dates via ANOVA and Tukey's post hoc tests. Principal component analysis 

(PCA) was used to investigate seasonal patterns in individual C. hyperboreus fatty acids. 

Data were standardized to a mean of zero and unit variance prior to their inclusion in the 

PCAs, and fatty acids that had unscaled weights (i.e. scaling=0) ≥ 0.3 (which 

corresponded to correlations/loadings >0.5) were considered influential to that principal 

component (McGarigal and Cushman 2000). The sample scores extracted for principal 

components 1 (PC1) and 2 (PC2) were compared among sampling dates using ANOVA 

and post hoc tests. The 'mixed' samples containing multiple stages (AF, CV, CVI) and the 

AF samples from April 2009 were coded differently in the ANOVAs. Ten separate 
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ANOVAs were performed, and P values were corrected accordingly using a sequential 

Bonferroni procedure (Holm 1979). Statistical analyses were performed in R (R 

Development Core Team 2010) and the package 'vegan' was used for PCA (Oksanen et 

al. 2010). 

RESULTS 

 Ice break-up occurred in late May of 2007 and in early August of 2008, and 

sampling was therefore conducted closer to the time of ice break-up in 2008 (Fig. 2.2). 

Maximum surface chlorophyll a based on satellite data was reported on June 30 of 2007 

and August 24 of 2008 (Fig. 2.2, O'Reilly et al. 2000). Ice began to reform in late 

November of 2007 and in early November of 2008 (Fig. 2.2, Cavalieri et al. 2004, 

updated daily). 

 Summer samples were dominated by high EPA, 16:1n-7, 22:1n-11, 20:1n-9, DHA 

and 16:0, whereas winter samples were dominated by high 16:1n-7, 20:1n-9, EPA, 22:1n-

11, DHA and 18:1n-9, when expressed as both relative proportions (Table 2.1) and µg 

mg-1 (Table 2.2). Summer C. hyperboreus had significantly higher ∑n-3s (F4,14=21.64, P 

<0.01), ∑n-6s (F4,14=276.25, P <0.005), ∑PUFAs (F4,14=41.94, P <0.006), and 

unsaturation index (F4,14=26.30, P <0.007), and significantly lower ∑MUFAs 

(F4,14=25.54, P <0.008) than winter samples (Fig. 2.2). Total fatty acids (∑µg mg-1, Table 

2.2) were higher in summer than winter samples (F4,14=18.13, P <0.01), although the 

difference between summer and winter 2008 was not significant (P>0.01). Percent (%) 

lipid was also higher in summer samples (Table 2.1), but only differed significantly 

between summer 2008 and winter 2009 (F4,14=4.21, P <0.03). ∑SAFA did not differ 

among sampling dates (P >0.05). Winter AF samples had a lower unsaturation index and 
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lower total fatty acids than winter mixed samples (Table2), but these differences were not 

significant (P >0.05).  

 The first three principal components extracted by the PCA of C. hyperboreus fatty 

acid proportions explained 70.3% of the variance in the data (Table 2.3). PC1 separated 

summer (positive scores) from winter C. hyperboreus (negative scores), due to positive 

loadings of LIN, 18:4n-3 and EPA in summer, and negative loadings of 16:1n-7, 20:1n-9 

and 22:1n-9 in winter (Fig. 2.3). Sample scores extracted for PC1 were significantly 

higher in summer vs. winter copepods (F4,14=35.20, P <0.006), and did not differ between 

the winter mixed and AF samples (P >0.05). PC 2 was characterized by negative loadings 

of 16:0 and positive loadings of ALA, 18:4n-3 and 22:1n-11 (Table 2.3), but PC2 scores 

did not differ among sampling dates (P >0.01). 18:1n-7, ARA and DHA did not load 

significantly on the first two PC axes extracted, reflecting their similar proportions among 

samples (Table 2.1). Average proportions of 18:1n-9 were higher in winter samples, 

although this fatty acid did not load significantly on the first two PC axes (Table 2.3).  

 Non-metric multidimensional scaling performed on the C. hyperboreus fatty acid 

proportions (Euclidean distances, dimensions = 2, stress = 0.06, results not shown) 

produced a similar ordination to the PCA, lending confidence to the above results. 

Furthermore, the µg mg-1 data generally supported results of the PCA and ANOVAs 

performed on proportions, because summer samples tended to have higher PUFA, 

including LIN, 18:4n-3 and EPA, and because 18:1n-7 was similar among sampling dates 

(Table 2.2). Similar to proportional data, winter samples (excluding AF) were also higher 

in µg mg-1 of 18:1n-9 (Table 2.2), but were not consistently higher in µg mg-1 of 16:1n-7, 

20:1n-9 and 22:1n-9 vs. summer C. hyperboreus (Table 2.2). Finally, there were slightly 
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lower µg mg-1 values of ARA and DHA in winter vs. summer samples (Table 2.2), 

whereas proportions were similar among sampling dates (Table 2.1).  

DISCUSSION 

Between-season variability in fatty acid proportions (i.e. winter vs. summer) was 

greater than within-season variability (e.g. summer vs. summer) because the first PC axis 

completely separated summer from winter C. hyperboreus. The separation of summer 

samples on PC1 due to high proportions of LIN, 18:4n-3 and EPA, as well as high ∑n-3, 

∑n-6, ∑PUFA and unsaturation index, is consistent with phytoplankton consumption, and 

agrees with previous reports (Lee 1974; Søreide et al. 2008) that summer C. hyperboreus 

have higher EPA and 18 PUFAs relative to winter samples. Fatty acid data for 

phytoplankton and other potential food sources (e.g. bacteria) are needed to differentiate 

the contribution of specific taxa to the diet of summer C. hyperboreus. However, 

phytoplankton were available in Cumberland Sound during our field operations based on 

chlorophyll a (integrated over 0-40m) measured at the C. hyperboreus sampling locations 

(67.6 mg m-2 on August 14, 2007, B. McMeans, unpublished data; 53.4 mg m-2 on July 

31, 2008, J. Brush, unpublished data), supporting the contention that summer fatty acid 

profiles reflected consumption of phytoplankton. 

 The C. hyperboreus fatty acid data presented here are, to the best of our 

knowledge, the first for eastern Canadian waters outside of the NOW (North Water 

Polyna, Stevens et al. 2004a; Stevens et al. 2004b). Both C. hyperboreus from 

Cumberland Sound and from the NOW during autumn (Stevens et al. 2004b) had 16:1n7, 

20:1n-9, 22:1n-11 and EPA in the highest proportions. Summer 2007 Cumberland Sound 
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samples had the most similar proportions of the above fatty acids (although 22:1n-11 was 

higher) relative to conspecifics from NOW station 54a (Stevens et al. 2004b), where C. 

hyperboreus were concluded to be feeding on ciliates, flagellates and/or dinoflagelles. On 

the other hand, summer 2008 Cumberland Sound samples were more similar to those 

from NOW station 68 (Stevens et al. 2004b), where C. hyperboreus were feeding on 

diatoms (Stevens et al. 2004b). It is prudent to note here that comparisons among studies 

that analyzed different lipid fractions are acceptable because the total fatty acid fraction 

(as reported here) and wax ester fraction (e.g. Stevens et al. 2004b) have similar 

proportions of most fatty acids (Graeve et al. 1994). One exception is 16:1n-7, which is 

lower in total fatty acids vs. wax esters (Graeve et al. 1994), indicating that our 16:1n-7 

values are lower than would be expected if the wax ester fraction was analyzed. 

Zooplankton fatty acids respond rapidly to changes in the composition and/or availability 

of phytoplankton (Lee et al. 1972; Stevens et al. 2004b), which likely explains the 

observed differences between summer 2007 and 2008 samples reported here. This 

explanation is especially likely because we sampled closer to the time of ice break-up in 

summer 2008 (Fig. 2.2). There is a need for future efforts to better categorize the 

progression of the phytoplankton bloom in Cumberland Sound, and the associated 

changes in the fatty acid profile of herbivorous zooplankton. 

  Similar to results from Cumberland Sound and the NOW, C. hyperboreus 

sampled during June and July in the Fram Strait also had EPA, 16:1n-7, 20:1n-9, 22:1n-

11 and DHA in the highest proportions (Kattner et al. 1989). One difference is that 

18:4n3 was a major fatty acid in C. hyperboreus from the latter study, contributing almost 

30% to copepods in areas where Phaeocystis pouchetii was abundant (Kattner et al. 



45 

1989). This fatty acid only contributed a maximum of 5.4% to Cumberland Sound 

samples (summer 2007, Table 2.1) and 9.7% to surface NOW C. hyperboreus (Stevens et 

al. 2004b), which supports the suggestion that large scale differences in fatty acids can 

exist between the Canadian and Norwegian arctic (Sargent and Falk-Petersen 1988). 

These differences likely reflect different compositions of algal species (Sargent and Falk-

Petersen 1988), which warrants further investigation.  

 Few studies have reported fatty acids for C. hyperboreus during winter months, 

but both Lee (1974) and Søreide et al. (2008) observed that proportions of fatty acids like 

LIN, 18:4n-3 and EPA decreased and C18 and C22 MUFA increased in C. hyperboreus's 

wax esters during the winter. It is unknown whether Cumberland Sound C. hyperboreus 

were in diapause at depth or had recently ascended to surface waters when sampled in 

winter 2008 and 2009. However, lower ∑PUFA, unsaturation index and % lipid of winter 

vs. summer samples provides evidence that these individuals were not actively feeding on 

ice algae or phytoplankton when sampled (which both have high PUFA, Søreide et al. 

2008). A previous report from the Beaufort Sea showed that C. hyperboreus were feeding 

at a very low rate (0.2 µg C ind-1 h-1, perhaps on microzooplankton) in mid-April prior to 

spring phytoplankton growth (Seuthe et al. 2007). Further, vertical ascent in C. 

hyperboreus is related to the timing of primary productivity (Hirche and Niehoff 1996), 

and active accumulation of lipid likely does not start until phytoplankton growth begins. 

Late March and early April are generally a time of low water column chlorophyll a and 

primary productivity in Frobisher Bay, when sea ice is still ~1-1.5m thick (Grainger 

1971). Sea ice thickness was ~0.8 m and 1.3 m at our sampling locations in Cumberland 

Sound during winter 2008 and 2009, respectively (snow thickness ~15-30 cm), and we 
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therefore assume that water column productivity was low, and subsequently that C. 

hyperboreus were not actively feeding. The observed fatty acid profiles of winter samples 

support this assumption and, therefore, reflect the overwintering strategy of C. 

hyperboreus with regards to lipid metabolism. Additional work is needed in Cumberland 

Sound to identify the depth of overwintering, the timing of vertical ascent to surface 

waters, and the commencement of feeding by C. hyperboreus. 

 The comparison between summer and winter fatty acids in the present study 

supports previous perceptions about lipid dynamics in C. hyperboreus during winter 

months. First, C. hyperboreus is known to incorporate and retain dietary PUFA in their 

phospholipids to maintain membrane function (Scott et al. 2002). For example, 

proportions of EPA, ARA and DHA in C. hyperboreus phospholipids can remain similar 

all year (Lee 1974). Therefore, observed values of EPA, ARA and DHA in winter C. 

hyperboreus from Cumberland Sound could reflect the portions that were retained in the 

phospholipids. Previous work in freshwater systems has also shown that zooplankton 

selectively retain certain essential fatty acids (Kainz et al. 2004), and conserve ARA and 

EPA during starvation (Schlechtriem et al. 2006).  

 Second, lower observed proportions and µg mg-1 of LIN, 18:4n-3 and EPA in 

winter samples agrees with reports that C. hyperboreus catabolizes a portion of dietary 

PUFA from their wax esters to meet energetic demands during the winter (Lee 1974), and 

during other times of little to no feeding (Kattner et al. 1989). The energetic cost of 

maintaining bodily functions during diapause is thought to be low, with molting and 

gonad formation the major causes of wax ester depletion during winter in Calanus spp. 

(Hopkins et al. 1984; Sargent and Falk-Petersen 1988). In high Canadian arctic (i.e. 
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Resolute Bay) C. hyperboreus, stage IV is the dominant overwintering stage, stage V 

molt all winter to adult males and females (some of which will wait to reproduce until the 

following winter), and egg production and release in adult females (AF) occurs from 

March to mid-May (Conover and Siferd 1993). Eggs were still observed in the oviducts 

of AF during both winter 2008 and 2009 sampling operations (i.e. egg release was not 

complete, B. McMeans, personal observation). Therefore, lower LIN, 18:4n-3 and EPA 

in winter vs. summer Cumberland Sound C. hyperboreus likely reflects the selective 

catabolization of these PUFA to fuel maturation in stage V copepodites and egg 

formation in AF. 

 Our seasonal comparison of fatty acids also provided two findings regarding the 

potential role of MUFAs during the winter that have not been thoroughly discussed in the 

literature. First, proportions of 16:1n-7, 18:1n-7, 20:1n-9, 22:1n-9 and 22:1n-11 were not 

consistently lower in winter vs. summer Cumberland Sound samples, which agrees with 

previous reports for C. hyperboreus from the Norwegian arctic (Søreide et al. 2008). This 

result is notable because all of these MUFA are found predominantly in storage 

molecules (wax esters and TAG, Albers et al. 1996), and should have decreased in winter 

copepods if they serve as energy stores to fuel reproductive process as presumed (e.g. for 

C20 and C22 MUFA, Sargent and Falk-Petersen 1988). AF from Cumberland Sound did 

have lower 20:1n-9 and 22:1n-11 than mixed winter samples on a µg mg-1 basis (Table 

2.2), supporting this presumption. Further, although C20 and C22 MUFA are not a major 

component of Calanus eggs (Sargent and Falk-Petersen 1988), lipids in AF are at their 

lowest once egg release is complete (Lee et al. 1972), and proportions of the above 

MUFA may be expected to decrease further in winter AF to fuel egg release. Analysis of 
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separate stages of C. hyperboreus would have provided more insight into the role of these 

MUFA in specific overwintering and reproductive processes. However, because AF in 

the present study had already formed eggs (although we cannot assume that egg 

formation was complete), it appears that MUFA are not the major fuel for overwintering, 

maturation or egg formation in C. hyperboreus. 

 A second finding from the present study that merits discussion is the higher 

average proportions of 18:1n-9 in winter C. hyperboreus versus summer, although the 

variability in winter samples was high (Table 2.1). Average µg mg-1 values of 18:1n-9 

were also higher in winter mixed samples (but not in AF) versus summer (Table 2.2), and 

previous researchers have also reported high 18:1n-9 in winter C. hyperboreus (Søreide et 

al. 2008; Lee 1974) and C. finmarchicus (Stage V and AF, Falk-Petersen et al. 1987). 

Increasing 18:1n-9 in winter could be accomplished if C. hyperboreus were desaturating 

18:0 to 18:1n-9 (Kattner and Hagen 1995; Sargent and Falk-Petersen 1988), although the 

reason C. hyperboreus would increase, or at least maintain, proportions of this MUFA 

from summer to late winter is unknown. Perhaps there is a biochemical role of 18:1n-9 in 

winter C. hyperboreus in addition to serving as an energy source. For example, the 

retention of ARA and DHA in winter-sampled C. hyperboreus from the present study, 

coupled with the increase in 18:1n-9, provide field evidence to support recent laboratory 

observations that fishes and mammals alter the combinations of specific MUFA-PUFA 

pairings in the sn-1 and sn-2 positions of phospholipids in response to cold exposure 

(Arts and Kohler 2009). Additionally, the combination of PUFA with cis ∆9 MUFA in 

the sn-1 position of carp liver phospholipids was found to have the greatest effect on 
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membrane physical properties (Fodor et al. 1995). However, further experimental work is 

required to validate this observation for C. hyperboreus.   

Implications for monitoring Calanus hyperboreus populations  

 Ice cover duration has decreased in the Canadian arctic (Kahru et al. 2011), and a 

discussion of the potential effects of changing ice conditions on C. hyperboreus 

populations is warranted. Earlier ice break-up is anticipated to cause a mismatch between 

the emergence of first-feeding C. glacialis naupulii and the timing of algae blooms 

(Søreide et al. 2010). Changing ice cover duration would likely affect C. hyperboreus 

differently, however, because female C. hyperboreus do not need access to food for 

successful reproduction during the winter (Conover 1967). However, nauplii might rely 

on ice algae in late winter/early spring for their first feeding (at stage NIII to NVI) 

(Conover and Siferd 1993). No study has addressed the effect of ice algae duration on C. 

hyperboreus nauplii survival, but it seems reasonable that earlier ice break up could result 

in a shorter duration for nauplii to exploit ice algae. Of course, earlier ice break-up could 

also result in earlier phytoplankton productivity, which could provide a food source for 

first feeding C. hyperboreus nauplii. 

 The effects of earlier ice break-up on C. hyperboreus populations are unclear, but 

C. hyperboreus is considered highly adapted to inter-annual variability in resource 

availability (Falk-Petersen et al. 2009) due to plasticity in the timing of their reproductive 

cycle (Conover and Siferd 1993). However, the large amounts of lipid accumulated by 

Calanus species is related to the short and variable duration of their food supply in polar 

seas (Albers et al. 1996). Less ice-cover and longer periods of open-water could therefore 
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influence the quantity of lipids accumulated by C. hyperboreus annually. Further, food 

quality (i.e. PUFA content) can affect the survival of C. glacialis naupulii (Daase et al. 

2011). Thus, any change in the quantity or quality of lipids associated with changing ice 

conditions could affect C. hyperboreus populations and the amount of lipids made 

available to upper trophic levels. It is therefore important to monitor how the fatty acid 

profile of C. hyperboreus changes over time. 

 Data presented here will be useful for monitoring the acquisition of fatty acids by 

C. hyperboreus in the summer, and utilization in the winter. We recommend summer C. 

hyperboreus monitoring to focus on changes in PUFA like ARA, EPA and DHA because 

C. hyperboreus fatty acids vary with phytoplankton availability and composition  

(Stevens et al. 2004b; Kattner et al. 1989), and should therefore reflect changes in 

phytoplankton quality. Monitoring of winter C. hyperboreus fatty acids would provide 

insight into changes in lipid strategy (i.e. which fatty acids are catabolized, conserved 

and/or biosynthesized), and could reflect underlying changes in ability to acquire lipids in 

the summer. Winter monitoring should focus on PUFA, because they are the major fuel 

for overwintering and reproduction, based on our results. Additionally, the unsaturation 

index (Treen et al. 1992) could be useful for monitoring overall changes in the degree of 

fatty acid unsaturation over time, and should be a highly sensitive indicator of change 

because it is based on µg mg-1 fatty acid values. Changes in 18:1n9 and long chain 

MUFA should also be noted because, based on the observation that they are not 

consistently depleted in winter C. hyperboreus, they could be important for winter 

survival.  
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 In conclusion, Calanus hyperboreus from Cumberland Sound exhibited similar 

seasonal patterns in fatty acids over two years, which provides evidence that specific fatty 

acids are consistently catabolized (e.g. EPA), conserved (e.g. DHA) and maintained (or 

increased) (e.g. 18:1n-9) between summer and winter. Our sampling was coarse, at only 

two times annually, but still revealed that PUFA are selectively catabolized to a greater 

degree than biosynthesized C20 and C22 MUFA to fuel maturation and egg formation 

during winter. The observation that C. hyperboreus maintains or increases proportions of 

certain MUFA during the winter (this study; Lee 1974; Søreide et al. 2008) suggests that 

these fatty acids have some purpose for successful overwintering or reproduction, and 

indicates that the role of MUFA in winter C. hyperboreus should be further explored. The 

data presented here are novel for this part of the world and are important for monitoring 

short and long-term changes in C. hyperboreus, as well as other zooplankton taxa and 

their higher trophic level consumers in arctic ecosystems. Additional work combining 

fatty acids with other dietary metrics (e.g. stable isotopes, sterols) collected over a more 

frequent (e.g. monthly) and prolonged (i.e. years) time scale, combined with data for the 

composition, abundance and fatty acids for phytoplankton, would greatly improve our 

understanding of the mechanisms governing C. hyperboreus fatty acids, and how this 

might relate to changes in environmental conditions. 
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Table 2.1. Fatty acid proportions of Calanus hyperboreus (fatty acid ∑fatty acids-1, 

expressed as a %, mean ± SE) sampled during summer (i.e. August) and winter (i.e. 

April) over two years in Cumberland Sound. Each individual sample (number of samples 

= “n”) was comprised of ca. 10 individuals of copepodite stages CIV, CV and adult 

females, except for the samples from winter 2009 marked with '♀' that consisted entirely 

of adult females. 

Date Summer 2007 Winter 2008 Summer 2008 Winter 2009 Winter 2009 ♀ 
n 5 2 5 5 2 

16:0 5.6 ± 0.3 5 ± 0.2 6.1 ± 0.3 5.9 ± 0.5 4.1 ± 0.3 
16:1n-7 16.6 ± 0.6 22.9 ± 0.5 17.3 ± 0.3 17.8 ± 0.3 20.5 ± 0.6 
18:1n-9 2.4 ± 0.2 5.9 ± 2.1 3.9 ± 0.1 7.6 ± 1.8 4.8 ± 0.4 
18:1n-7 2.3 ± 0.1 1.9 ± 0.3 1.4 ± 0 2.4 ± 0 2.3 ± 0.1 
18:2n-6 3.9 ± 0.1 1.1 ± 0.5 3.5 ± 0.1 1.2 ± 0.1 1.6 ± 0.1 
20:1n-9 10.5 ± 1.1 17.3 ± 1.3 11.3 ± 0.4 16.1 ± 1.4 15.1 ± 0.3 
18:3n-3 1.2 ± 0.3 1.3 ± 0.5 0.9 ± 0.3 0.8 ± 0.3 0.3 ± 0 
18:4n-3 5.4 ± 0.6 1.2 ± 0.2 1.5 ± 0.1 1.2 ± 0.2 1.7 ± 0.2 
22:1n-11 14.5 ± 1.5 12.1 ± 0 8.7 ± 0.5 9.9 ± 0.6 9.8 ± 0.5 
22:1n-9 1.8 ± 0.4 3.3 ± 0.7 1.6 ± 0.1 2.2 ± 0.3 5.2 ± 0.1 
20:4n-6 0.2 ± 0 0.1 ± 0 0.2 ± 0 0.2 ± 0 0.3 ± 0 
20:5n-3 16.9 ± 1 10.7 ± 0.7 20.8 ± 0.3 12.6 ± 0.5 13.8 ± 0.1 
22:5n-3 1 ± 0.1 0.4 ± 0.1 0.7 ± 0 0.5 ± 0 1 ± 0.1 
22:6n-3 9.3 ± 0.3 8.4 ± 0.3 8.9 ± 0.4 10.5 ± 0.4 9.4 ± 0 
∑n-3 34.1 ± 1.2 22.5 ± 0.4 33.2 ± 0.6 26.1 ± 1 26.4 ± 0.2 
∑n-6 4.9 ± 0.1 2.3 ± 0.6 8.6 ± 0.1 2.6 ± 0.1 3.4 ± 0.1 
∑SAFA 11.8 ± 1.2 10.6 ± 0.7 13.2 ± 0.7 13.4 ± 1.3 9 ± 0.3 
∑MUFA 49.2 ± 2.3 64.7 ± 0.9 44.9 ± 0.7 57.8 ± 0.7 61.1 ± 0 
∑PUFA 38.9 ± 1.2 24.8 ± 0.2 41.9 ± 0.5 28.8 ± 1.2 29.8 ± 0.3 
% lipid 33.7±2.0 29.3±4.5 36.0±1.3 27.2±1.5 27.4±3.0 

Percent (%) lipid: mass of lipid dry weight of sample-1 
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Table 2.2. Mean ± 1SE µg fatty acid mg-1 dry tissue of Calanus hyperboreus  

collected in Cumberland Sound during summer (i.e. August) and winter (i.e. April) of 

two consecutive years. Individual samples (total number of samples equals 'n') were 

comprised of ca. 10 individuals of copepodite stages CIV, CV and adult females, except 

for the samples from winter 2009 marked with '♀', which consisted entirely of adult 

females. 

Date 
Summer 

2007 
Winter 
2008 

Summer 
2008 

Winter 
2009 

Winter 2009 
♀ 

n 5 2 5 5 2 
16:0 9.3±0.8 7.1±1 12.4±0.4 7±0.6 4.4±0.2 

16:1n-7 27.7±2 33±4.9 35.2±1.4 21.2±1.4 21.8±3.1 
18:1n-9 4±0.4 9±4.5 8±0.3 9.2±2.5 5.2±1 
18:1n-7 3.7±0.2 2.8±0.8 2.8±0.1 2.8±0.1 2.5±0.2 
18:2n-6 6.6±0.5 1.7±0.9 7.1±0.3 1.4±0.2 1.7±0.2 
20:1n-9 17.2±1.4 24.6±2.3 23.1±1.4 19±1.8 16±1.5 
18:3n-3 1.8±0.5 2±1.1 2±0.8 0.9±0.4 0.4±0 
18:4n-3 9.2±1.4 1.8±0.5 3.2±0.2 1.5±0.2 1.9±0.4 
22:1n-11 23.8±2 17.5±2.9 17.9±1.6 11.7±0.9 10.4±0.7 
22:1n-9 2.8±0.6 4.6±0.1 3.2±0.3 2.6±0.3 5.5±0.5 
20:4n-6 0.4±0.1 0.2±0.1 0.4±0 0.3±0 0.3±0 
20:5n-3 28.3±2.7 15.3±1.6 42.4±1.7 15±1.2 14.7±1.8 
22:5n-3 1.6±0.1 0.6±0 1.5±0.1 0.6±0.1 1±0.1 
22:6n-3 15.4±0.5 12±1.6 18±0.6 12.4±0.5 10±1.1 
∑n-3 56.7±4.2 32.3±4.9 67.8±2.9 30.9±2.1 28.1±3.4 
∑n-6 8.1±0.5 3.4±1.3 17.5±0.8 3.1±0.3 3.6±0.6 
∑SAFA 19.8±2.4 15.4±3.5 26.8±1.2 15.8±1.6 9.6±0.7 
∑MUFA 81.2±3.5 93±14.6 91.7±4.3 68.6±3.8 65±7.3 
∑PUFA 64.8±4.6 35.8±6.4 85.6±3.6 34.2±2.4 31.7±3.9 

UI 385 268 478 239 221 
Total FA 165.8±7.9 144.2±24.5 204.1±7.8 118.6±6 106.4±12 

Unsaturation index (UI): ∑(µg fatty acid mg -1*number of double bonds) 

  



58 

Table 2.3. Eigenvalues, proportion explained and unscaled weights of each fatty acid 

variable on the first three principal components (PC) of a PCA performed on Calanus 

hyperboreus fatty acid proportions. 

 

 

 

 

 

 

 

 

  

Principal components PC1 PC2 PC3 
Eigenvalue 4.57 2.52 2.06 
Cumulative Proportion 0.35 0.55 0.70 

Fatty acid 
16:0 0.2 -0.3 0.0 
16:1n-7 -0.3 -0.1 0.2 
18:1n-7 -0.2 0.2 -0.6 
18:1n-9 -0.2 -0.2 -0.2 
18:2n-6 0.4 0.2 0.1 
20:1n-9 -0.4 0.0 0.1 
18:3n-3 0.0 0.4 0.1 
18:4n-3 0.3 0.3 -0.3 
22:1n-11 0.0 0.6 -0.1 
22:1n-9 -0.4 0.2 0.1 
20:4n-6 0.2 -0.2 -0.5 
20:5n-3 0.4 -0.2 0.2 
22:6n-3 -0.1 -0.2 -0.46 
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Fig. 2.1. Calanus hyperboreus sampling locations during summer (open-water, August) 

2007 and 2008 and winter (ice-cover, April) 2008 and 2009 in Cumberland Sound, Baffin 

Island, Nunavut, Canada. 
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Fig. 2.2. Mean and standard deviation of relative proportions (fatty acid ∑fatty acids-1, 

expressed as %) of Calanus hyperboreus monounsaturated fatty acids (∑MUFA: grey 

symbols), polyunsaturated fatty acids (∑PUFA: white symbols), and saturated fatty acids 

(∑SAFA: black symbols) over four sampling events (highlighted) in Cumberland Sound, 

Baffin Island, Nunavut. Timing of ice-cover and maximum surface chlorophyll a in 

Cumberland Sound obtained from satellite data are shown from May 2007 to April 2009. 
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Fig. 2.3. Biplot of the component scores (symbols) and fatty acid variable loadings 

(vectors) on the first two principal components from a PCA performed on fatty acid 

proportions (%) in Calanus hyperboreus. Both scores and variables are scaled by the 

square root of the eigenvalues (i.e. scaling = 3). All samples consisted of pooled 

copepodite stage VI, V and adult females except for two winter 2009 samples that 

consisted entirely of adult females (marked with 'AF'). 

 

 

  



62 

CHAPTER 3 

COUPLING OF MACROALGAL AND PHYTOPLANKTON ENERGY PATHWAYS 

BY CONSUMERS INHABITING A SEASONALLY ICE-COVERED FJORD 
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INTRODUCTION 

 Explicitly linking food web structures (i.e. patterns of carbon flow within a food 

web that arise from feeding interactions among consumers) with mechanisms that 

increase persistence (i.e. the continued existence of a food web through time) has proven 

a difficult task (Paine 1988; Levin 1998). Given that anthropogenic activities are known 

to affect food web structure  (Rooney et al. 2008; Wassmann et al. 2011), connecting 

structures with mechanisms of persistence is of increasing importance. Recent theoretical 

models have linked a seemingly common food web structure with the ability of food 

webs to persist through time: the existence of resources that differ in biomass turnover 

rates and abundance (i.e. that vary asynchronously), which are 'coupled' in space by 

generalist consumers (i.e. that move across spatial boundaries to feed on multiple 

resources as they become abundant, Rooney et al. 2006; McCann and Rooney 2009). 

When present, this 'spatial coupling of asynchronous resources' (see Fig. 1.1. for visual 

representation of this structure) is associated with several empirical patterns. First, lower 

trophic levels generally feed within distinct 'resource compartments' by deriving energy 

predominantly from one of two (or more) available resources (e.g. phytoplankton or 

detritus). Second, upper trophic level couplers should use carbon sources from multiple 

resource compartments, across spatial boundaries (McCann and Rooney 2009). Together, 

these factors impart a 'hump-shape' structure to food webs (Fig. 1.1; Rooney et al. 2006), 

which appears to be iterative across spatial scales and within and between ecosystems 

(McCann and Rooney 2009). Soil, freshwater and marine food webs from temperate 

climates have been shown to exhibit this 'hump-shape' structure (Rooney et al. 2006; 

Dolson et al. 2009). However, it is unknown if food webs from latitudes that experience 
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high degrees of seasonality and temporal variability, which can be driven primarily by 

one energy source (phytoplankton, e.g. Renaud et al. 2011), are structured such that 

spatially asynchronous resource compartments are coupled by upper trophic levels.

 Almost all marine ecosystems exhibit temporally varying levels of productivity to 

some degree, however, arctic and sub arctic seas that are seasonally ice-covered 

experience a much shorter duration of primary production (e.g. 1-4 months per year) than 

more temperate locations (e.g. Baltic Sea, 9 months per year; Weslawski et al. 1991). 

Short, intense phytoplankton blooms during spring and summer fuel pelagic food chains 

(e.g. phytoplankton-zooplankton-fish-seabirds; Hobson et al. 2002; Falk-Petersen et al. 

2007) and sink to provide labile phytodetritus that is rapidly exploited by benthos 

(Grebmeier and Barry 1991; Iken et al. 2010). An additional, yet understudied, primary 

production source in arctic seas is benthic macroalgae, which can be locally abundant in 

some areas (e.g. Beaufort Sea, Dunton and Schell 1987). With the exception of 

herbivorous calanoid copepods (Falk-Petersen et al. 2009), arctic consumers are widely 

acknowledged to exploit a variety of resources, including detritus, and to feed 

omnivorously (Iken et al. 2005; Forest et al. 2008; Renaud et al. 2011), but only one 

study to date has assessed if consumers in an arctic sea also rely on carbon and nutrients 

from macroalgae (but see Dunton and Schell 1987). Further, it is unknown if food webs 

in highly seasonal arctic seas exhibit 'hump-shape' structures similar to food webs from 

temperate latitudes (Rooney et al. 2006; Dolson et al. 2009), or if the importance of 

phytoplankton and prevalence of omnivory preclude such structures from arising. 

 The goal of the present study was to identify if an arctic food web exhibited 

spatial coupling of asynchronous resources, because this structure has been previously 
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identified as important for food web persistence (based on theoretical food web models) 

and is common in food webs from temperate latitudes (Rooney et al. 2006; Dolson et al. 

2009). The following questions were asked: 1) do zooplankton feed heavily on 

phytoplankton and benthos heavily on macroalgae, creating two distinct resource 

compartments within an arctic food web? and 2) how are these distinct resource 

compartments, if apparent, coupled by upper trophic levels (elasmobranchs, teleosts and 

marine mammals)? Stable carbon isotopes (δ13C) and fatty acid trophic markers were 

applied to trace the relative use of basal resources among consumers. The null hypothesis 

is that lower trophic levels will rely heavily on either phytoplankton or macroalgae and 

upper trophic levels will use intermediate amounts of carbon from phytoplankton and 

macroalgae (as assessed through δ13C values and fatty acids), indicating resource 

coupling (i.e. predicted pattern = observed pattern). One possible alternate hypothesis is 

that lower and upper trophic levels will use similar amounts of one carbon source, 

indicating little spatial resource coupling (i.e. predicted pattern ≠ observed pattern, see 

Fig. 1.1. for visual representations of hypotheses).  

As arctic seas are currently experiencing decreased ice cover duration (Markus et 

al. 2009) and earlier timing of primary production (Kahru et al. 2011), the possible effects 

of climate change on the structure of arctic food webs are also considered. 

MATERIALS AND METHODS 

Study site  

 Sampling was conducted within Pangnirtung fjord or just outside the mouth of 

Pangnirtung fjord in Cumberland Sound (see Fig. 2.1 for map of sampling locations). 

Pangnirtung fjord is characterized by wide (up to 600 m) intertidal flats consisting of 
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sand, gravel and boulders, and large (up to 7 m) tides (Aitken and Gilbert 1989). Fucus 

grows on boulders in the intertidal and subtidal zones of Pangnirtung fjord, and a benthic 

fauna of polychaetes, mollusks and amphipods exists from ~5-50 m depth (Aitken and 

Gilbert 1989). Water depth increases towards the middle of Pangnirtung fjord to a 

maximum of ~150 m. The ichthyofauna during summer include arctic char (Salvelinus 

alpinus), capelin (Mallotus villosus) and shorthorn sculpin (Myoxocephalus scorpius). 

Greenland sharks (Somniosus microcephalus) also enter Pangnirtung fjord and ringed 

(Pusa hispida) and harp seals (Phoca groenlandica) are common. Fucus  sp. are the 

dominant genus covering the shores of Pangnirtung fjord (B. McMeans personal 

observation, Aitken et al. 1988), and was therefore considered to be the most likely 

source of fresh and detrital macroalgae to consumers within the sampling area.  

Sampling of species 

 A variety of benthic and pelagic invertebrates and vertebrates, as well as POM 

and the brown macroalga Fucus distichus (rockweed), were collected during summer of 

three sequential years: 11 August-7 September 2007, 30 July-15 August 2008 and 10-19 

August 2009 (see Table 3.1 for species sampled). Data presented here were 

predominantly collected during 2008 (see Table 3.2 for sampling dates), and three 

species, rockweed, copepod (Calanus hyperboreus), and scallop (Chlamys islandica), 

were sampled during both 2008 and 2009 (Table 3.2). 

 POM was sampled by towing a 10-µm plankton net (Wildlife Supply Company®, 

Buffalo, New York) from 50 m to the surface and rockweed was sampled either by hand 

(low tide) or by ponar (high tide). Each rockweed sample consisted of the tip of one leaf 

(i.e. distal end) from one plant. Benthic and pelagic invertebrates and vertebrates were 
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classified into functional groups based on previously reported habitat (e.g. benthic versus 

pelagic) and diet attributes (e.g. herbivore versus carnivore, Table 3.1). These 

classifications reflect the dominant habitat and feeding mode of species. For example, 

arctic char were classified as pelagic because they feed predominantly on the pelagic 

amphipod Themisto libellula (Moore and Moore 1974) and capelin (B.C. McMeans, 

personal observation) in Cumberland Sound, although they will also consume benthic 

amphipods like Gammarus oceanicus (Moore and Moore 1974). Similar-sized 

individuals of each species were collected, with the exception of adult sculpin. Due to 

size-related diet variability in this species (Cardinale 2000), sculpin were separated into 

'small' (<24 cm) and 'large' individuals (>24 cm). Herbivorous and carnivorous benthos 

were sampled using dip nets by wading into water at low tide, except for scallop that 

were collected in water 30-40 m deep using a dredge. Zooplankton were captured by 

towing a 243 µm plankton net (Wildlife Supply Company®, Buffalo, New York) behind 

a boat at the surface and by performing vertical hauls down to ~40 m. Pelagic fish were 

sampled via dip nets and gill nets and the benthic sculpin were captured using baited 

fishing line. The remaining benthic and benthic/pelagic fishes were collected using 

bottom long lines (typically 50 hooks, ~200 m long). Marine mammals were captured 

during Inuit subsistence hunting. Multiple individuals (2-10) of each zooplankter, 

polychaete worm and benthic amphipod (scud, G. oceanicus) were pooled for stable 

isotope and fatty acid samples. White muscle of fishes, and muscle and blubber (inner 

layer) of marine mammals was dissected from the dorsal surface. All samples were 

placed into cyrovials and immediately frozen at -20°C (stable isotopes) and at -80°C 

(fatty acids), and kept at these temperatures, until analysis.  
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Stable isotope analysis 

  Samples were lipid extracted prior to stable isotope analysis following a modified 

Folch et al. (1957) method (detailed in McMeans et al. 2009). Based on suggestions by 

Mateo et al. (2008), acid washing was avoided except for samples with potentially high 

CaCO3 content (i.e. scud due to exoskeleton and Littorina (periwinkle) due to shell). Due 

to the importance of copepod δ13C values in determining the proportion of pelagic carbon 

consumed by species (see data analysis section below), the influence of acid washing on 

copepods was also explored, which has been performed by previous researchers (e.g. 

Tamelander et al. 2006). Removal of carbonates was achieved using 1M HCl added to 

samples drop-by-drop until bubbling ceased (Jacob et al. 2005). After addition of HCl, 

bubbling only occurred with scud and periwinkle, and δ13C decreased by 1.50 ±0.32 and 

5.36±1.62‰, respectively; the desired effect for carbonate removal. However, δ15N also 

decreased following the acid washing procedure (by 1.25±0.67 and 0.33± 0.82‰ for scud 

and periwinkle, respectively) and we therefore used δ15N values from non-acid treated 

samples. When copepods were acid washed, results were consistent with those of Mateo 

et al. (2008), because acid treated copepods were occasionally enriched in 13C by as much 

as 0.66‰; an undesirable result. Further, acid washing only altered δ13C of copepod by 

mean±SD of 0.01±0.37‰, and the non acid washed stable isotope values were therefore 

used for copepod.   

 Following pre-treatment, approximately 0.5 mg of each sample was weighed into 

tin capsules and run on a continuous-flow isotope ratio mass spectrometer (Delta V 

Advantage, Thermo Electron) at the Great Lakes Institute for Environmental Research. 

Stable isotopes are expressed as delta δ values where δ X = 1000[Rsample  Rstandard
-1) -1], 
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and X = 15N or 13C and R = the ratio of 15N:14N or 13C:12C. Replicate analyses of NIST 

(National Institute of Standards and Technology) standard bovine muscle (NIST 8414, N 

= 70) and internal lab standard (tilapia muscle, N = 7) yielded a precision (i.e. one 

standard deviation) of 0.14 and 0.25‰ for δ15N and 0.07 and 0.10‰ for δ13C, 

respectively. 

Fatty acid analysis 

  Total lipids were extracted from samples in 2 mL of 2:1 (v/v) 

chloroform:methanol (Folch et al. 1957). Fatty acid methyl esters were generated (from 

the total lipid extract) in a sulphuric-methanol solution (1:100 mixture) (see Chapter 2, 

McMeans et al. 2012 for detailed analytical methods) and separated on a Hewlett Packard 

6890 GC (splitless injection, column = Supelco (SP-2560 column). Fatty acids were 

identified using a 37-component fatty acid standard (Supelco 47885-U). 

Data analyses 

 Values of δ13C are higher in macroalgae versus phytoplankton and can be applied 

to trace the use of these resources by consumers (e.g. Fredriksen 2003). However, using 

POM as the baseline for phytoplankton in mixing models is often not appropriate because 

of the difficulty in obtaining a sample free of other carbon sources and detritus (Iken et al. 

2010). POM samples can therefore provide inaccurate representations of the marine 

carbon signature and can result in over-estimation of consumer reliance on macroalgae 

(Miller and Page 2012). Finally, primary consumers are less variable in their δ13C than 

primary producers with space and time (Vander Zanden et al. 1998; Iken et al. 2010). 

Therefore, the δ13C of a primary consumer of phytoplankton (i.e. copepod, C. 

hyperboreus; Søreide et al. 2008) and benthic macroalgae (limpet, Tectura testudinalis; 
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Fredriksen 2003) were used as baselines for calculations of trophic position (TP) and the 

proportion of pelagic carbon consumed (α). Both baselines were assigned a trophic 

position of 2. There was no difference in the outputs from one- and two-source TP 

calculations (see Post 2002 for implementation of two-source TP model), and the 

following one source TP model was therefore applied for all individuals: 
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Copepod average δ15N (from the same year as the consumer was sampled, Table 3.2) 

was used as the δ15Nbaseline and 3.4‰ was used as the diet-tissue discrimination factor (i.e. 

∆15N; Post 2002). One exception to the above was Greenland sharks. Because TP 

calculations for sharks can be problematic, due to, for example, uncertainty over ∆15N 

(Hussey et al. 2012), the Greenland shark's TP was calculated using 2.3‰ for the ∆15N, 

which was previously derived for large sharks (Hussey et al. 2009), and the mean δ15N of 

capelin, which have a relative TP of 3 (Sherwood and Rose 2005; McMeans et al. 2010), 

as the baseline. 

 The proportion of phytoplankton (vs rockweed) carbon that was incorporated into 

the tissues of consumers (i.e. α) was calculated using a modified version of the two-

source mixing equation (Post 2002; Vander Zanden and Vadeboncoeur 2002) as follows: 

� =
		�� !������	
	 − [∆� !	 × $��������	
	%	�����	���	&] −	�

� !���(	)	

�� !*������−	�
� !���(	)	

 x	100    Eqn. 2 

The term [∆13C x (TPconsumer - TPbaseline )] accounts for the enrichment of consumer 13C at 

each trophic step (i.e. ∆13C) above the primary consumer baseline. The ∆13C was set at 

0.8‰ (Dunton and Schell 1987; Fredriksen 2003; Nilsen et al. 2008) and TPconsumer is the 

result of the one source TP model for each individual (Eqn. 1). 
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 Normality was assessed using q-q plots, and homoscedacity via Levene's tests. 

Two-way ANOVAs (factors=date and species) were used to identify differences in δ13C 

and δ15N between 2008 and 2009 for copepod and scallop. Macroalgae are variable in 

their stable isotope values, both among individual plants and within different areas of the 

same plant (Stephenson et al. 1984; Dunton and Schell 1987). Due to high variability of 

Fucus stable isotopes identified in the present study, relative to other species, a separate 

Welch's t test was therefore used to compare their δ13C and δ15N between sampling dates. 

ANOVA followed by Tukey's post hoc tests were used to compare δ13C, δ15N and TPs 

among functional groups (i.e. zooplankton, benthos, consumers). Due to departures from 

normality, a Kruskal-Wallis non-parametric ANOVA followed by Mann-Whitney tests 

(with Bonferroni corrections) was used to compare δ13C-derived values of α among 

functional groups. 

 Fatty acids were first compared between Cumberland Sound rockweed and 

published values for POM (from the Canadian arctic, Stevens et al. 2004). Consistent 

with previous work on macroalgae (Bell and Sargent 1985; Graeve et al. 1994; 

Kharlamenko et al. 1995; St John and Lund 1996), differences were as follows: rockweed 

had higher 18:2n-6 and 20:4n-6 than POM, whereas POM had higher 16:1n-7, 22:6n-3 

and ω3:ω6 than rockweed (Table 3.3). Non-metric multidimensional scaling (NMDS, 

dimensions = 2, Euclidean distances) was then performed including these five fatty acids 

on Cumberland Sound: 1) rockweed, zooplankton, benthos and 2) fish and marine 

mammal consumers. All analyses were performed in R (R_Development_Core_Team 

2010) and the significance level was conservatively set at 0.01. 
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 Food web components were sampled in August to allow organisms time to 

incorporate the signature of their summer diet, which should have been occurring since 

ice break up (mid July 2008 and early June 2009). Few stable isotope or fatty acid 

turnover studies exist for arctic organisms, although turnover is likely slow due to cold 

temperatures. However, C. hyperboreus has a turnover time of 11 d for fatty acids 

(Graeve et al. 2005), and Onisimus litoralis turned over half of its nitrogen and carbon in 

22.4 and 18.7 days, respectively, even at 1°C (Kaufman et al. 2008). Nordström et al. 

(2009) was able to observe differences in isotopes in invertebrates and juvenile teleosts 

from month to month during the productive period in the northern Baltic Sea. Even 

though August is considered mid to late summer in Baffin Island waters (Hsiao 1988), 

phytoplankton was still present during sampling based on measured values of chlorophyll 

a, which were 67.6 mg m-2 on August 14, 2007 (B. McMeans, unpubl. data) and 53.4 mg 

m-2 on July 31, 2008 (J. Brush, University of Waterloo, unpubl. data) (integrated over the 

upper 40 m). Thus, it seems reasonable that species sampled in August would reflect their 

summer diet from the previous weeks (invertebrates) or months (fishes, mammals), which 

for the latter would still be during open water, or at least during ice break up. One definite 

exception is the Greenland shark, whose muscle stable isotope and fatty acid values likely 

reflect longer incorporation times due to their large size and presumably slow growth rate 

(MacNeil et al. 2006; MacNeil et al. 2012). However, their stable isotope and fatty acids 

values are still informative regarding their relative location within the food web. 

RESULTS 

No significant inter-annual variability existed in δ13C or δ15N for the three species 

sampled in both 2008 and 2009 (i.e. rockweed, Welch's t test, P>0.01; copepod or 
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scallop, two-way ANOVA, both P>0.01). Values of δ15N and δ15N-derived TPs were 

significantly lower in zooplankton and benthos versus fish and marine mammal 

consumers (Table 3.4). At the species level, calculated TPs for zooplankton and benthos 

supported their functional group assignments and previous diet information (Table 3.1) 

and ranged from 1.5 to 2.0 in herbivores, from 2.1 to 2.2 in omnivores and from 2.4 to 

3.2 in carnivores (Fig. 3.1, Table 3.2). Calculated TPs also agreed with the known diets of 

pelagic fish and mammals (2.4 to 3.5), benthic fishes (3.9 to 4.1) and was 4.6 in the 

benthic/pelagic Greenland shark, which consumes fishes and marine mammals (Table 

3.2). 

 Values of δ13C decreased significantly from benthos to fish and marine mammal 

consumers to zooplankton, and calculated values of α exhibited the opposite trend (Table 

3.4). Thus, coupling of macroalgae and phytoplankton by upper trophic level consumers 

was apparent because calculated values of α for fish and marine mammals (i.e. 58-100) 

fell in between, although overlapped with, that of benthos (4-71) and zooplankton (94-

100) (Fig. 3.1). Herbivorous, omnivorous and carnivorous zooplankton relied entirely on 

pelagic carbon based on calculated values of α>95 (Fig. 3.1, Table 3.2). Benthos 

exhibited a wider range of resource use, from heavy reliance on macroalgal carbon in 

some herbivorous mollusks (i.e. limpet and periwinkle, α<5) and the carnivorous 

polychaete (α=11), to the use of both macroalgae and phytoplankton by the benthic 

herbivores scallop, clam and G. oceanicus (α=53 to 71, Table 3.2). The carnivorous 

whelk (Buccinum cyaneum) and nudibranch appeared to couple the two aforementioned 

groups (α=46 and 39, respectively, Fig. 3.1). Most of the energy acquired by fish and 

marine mammal consumers in Cumberland Sound ultimately arose from phytoplankton 
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production based on α values ranging from 58 to 100 (Fig. 3.1). However, macroalgae 

did contribute to the energy acquired by several pelagic fish and mammals (e.g. char and 

harp seal, α=85 and 71, respectively) as well as large individuals of the benthic sculpin 

(α =58, Table 3.2). 

 The NMDS performed on rockweed and invertebrate fatty acids supported δ13C-

derived values of α because all zooplankton separated away from rockweed due to higher 

proportions of phytoplankton trophic markers (16:1n-7, DHA and ω3:ω6), and lower 

proportions of macroalgae markers 18:2n-6 and 20:4n-6 (Fig. 3.2A, Table 3.3). Benthos, 

on the other hand, clustered more closely to rockweed due to high proportions of 18:2n-6 

and 20:4n-6 (Fig. 3.2A). The three herbivorous benthos with intermediate α values also 

exhibited fatty acid evidence of phytoplankton consumption due to high 16:1n-7 in clam 

and scud and high 22:6n-3 in scallop (Fig. 3.2A), and their location relative to rockweed 

on these plots indicates higher reliance on phytoplankton by the bivalves and reliance on 

both rockweed and phytoplankton by scud. The carnivorous mollusks, whelk and 

nudibranch, fell in between the rockweed- and phytoplankton- reliant invertebrates on the 

NMDS plot (Fig. 3.2A), supporting the suggestion by α that they coupled these two 

resource compartments. 

 NMDS performed on consumers revealed that pelagic fish and mammals 

separated from each other due to different relative contributions of phytoplankton trophic 

markers (Fig. 3.2B, Table 3.3), supporting reliance on phytoplankton as indicated by 

α values. Unlike the other fatty acid biomarkers, proportions of 18:2n-6 varied little 

among consumer species (1.1-1.8%, Table 3.3) and may not be useful as a macroalgae 

biomarker in upper trophic levels (which agrees with results of Hall et al. 2006). 
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Proportions of 20:4n-6, on the other hand, varied from 0.4% in pelagic fish like capelin to 

4.4% in benthic fish like sculpin (Table 3.3), which coincides with lower and higher δ13C 

in these fishes, respectively (δ13C capelin=-19.37 ± 0.15, large sculpin=-16.79 ± 1.07), 

indicating that 20:4n-6 can trace macroalgae use by upper trophic levels. Further 

exploration of 20:4n-6 among consumers indicated decreasing proportions from 

3.5±1.5% in benthic to 1.5±0.2% in benthic/pelagic to 0.4±0.2% in pelagic consumers. 

These differences were significant based on a Kruskal-Wallis non-parametric ANOVA 

(χ2=39.8, DF=2, P<0.001). Thus, the macroalgae biomarker 20:4n-6 supported values of 

α in indicating greater reliance on rockweed carbon by benthic fishes like sculpin (α=58-

74) than by pelagic fishes like capelin (α=96). One exception is the skate (α=100), which 

had higher proportions of 20:4n-6 than capelin (Table 3.3), suggesting greater reliance on 

rockweed-consuming prey by skate than indicated by α values. Based on combined stable 

isotope and fatty acid data, all fish and marine mammal species sampled acted as couplers 

of phytoplankton and rockweed to some extent except for herring (Clupea harengus) and 

capelin (both α >95). 

DISCUSSION 

The exclusive use of phytoplankton by all zooplankton species, and rockweed by 

several benthos, is consistent with the expectation that lower trophic levels tend to feed 

within resource compartments (McCann and Rooney 2009). Combined with the 

observation that most fish and marine mammal consumers relied to some extent on both 

phytoplankton and rockweed  (i.e. all except capelin and herring had α<85), results from 

Cumberland Sound indicate that, at least when sampled during the productive period, an 
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arctic food webs was structured such that resource compartments based on different basal 

resources were coupled by upper trophic levels, which reaffirms previously identified 

food web structures (Post et al. 2000; Rooney et al. 2006; McCann and Rooney 2009). 

For the top predators in Cumberland Sound, phytoplankton was the dominant energy 

source based on values of α and fatty acid trophic markers. This is perhaps not surprising 

considering the importance of fresh phytoplankton and phytodetritus as an energy source 

to both benthic and pelagic consumers in many arctic seas (e.g. Falk-Petersen et al. 2007; 

Iken et al. 2010; Renaud et al. 2011). As observed previously in the Beaufort Sea 

(Dunton and Schell 1987), however, macroalgae was also utilized by several benthic and 

pelagic species, indicating that the Fucus lining the shores of Pangnirtung fjord does play 

a role in fueling the food web. This structure was, however, highly skewed such that top 

predators ultimately derived the majority of their energy from phytoplankton. 

  The phytoplankton and rockweed consumed by benthos were likely in the form 

of detritus, based on higher δ13C in the bivalves and scud relative to zooplankton 

(sedimenting POM and detritus becomes isotopically enriched, Lovvorn et al. 2005) and 

the ~1‰ lower δ13C of limpet versus rockweed (Table 3.2) (rockweed detritus was 

depleted in 13C versus fresh material, Fig. 6.5). Previous studies have also found that 

benthos rapidly exploit phytodetritus (Grebmeier and Barry 1991), and that 'aged' 

macroalgae is more palatable for consumers than fresh macroalgae (Norderhaug et al. 

2003). Thus, a consumer in Cumberland Sound that preys on herbivorous zooplankton 

and amphipods, for example, like arctic char (Moore and Moore 1974), could obtain 

carbon that originated from two different phytoplankton pools: phytoplankton (consumed 

by zooplankton) and phytodetritus (consumed by amphipods), as well as from 
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macroalgae (consumed by amphipods). Results from Cumberland Sound support 

previous conclusions that the benthos use a greater range of resources than zooplankton 

(Iken et al. 2005; Tamelander et al. 2006), which is important for allowing benthos to 

maintain greater biomass in areas than would otherwise be possible on autochthonous 

production alone (Feder et al. 2011). However, based on the present study, the benthos 

are also important for making arctic food webs more reticulate by increasing the number 

of resources made available to ultimately support production in upper trophic levels.  

 The reliance by different benthic species on different resources also created a set 

of distinct resource compartments within the benthos, macroalgae and phytodetritus, that 

were apparently coupled by the benthic predators whelk and nudibranch. Other highly 

mobile, benthic omnivores that can move long distances and feed on both benthic and 

pelagic prey (e.g. crabs and shrimps, Feder et al. 2011) would also be expected to couple 

distinct resource compartments within the benthic food web. The results reported here are 

among the first empirical evidence to support the suggestion by McCann and Rooney 

(2009) that the coupling of different resource compartments is repeated at various scales 

(i.e. within a trophic level, within an ecosystem, between ecosystems), and provides 

additional evidence of the importance of the benthos for arctic food web structure. 

 It is important to consider that the pulsed nature of phytoplankton growth in arctic 

seas (Weslawski et al. 1991; Forest et al. 2008) would impart a temporal aspect to the 

food web structure reported here. Early during the productive period, energy derived 

from phytoplankton would rapidly reach top predators through the pelagic pathway (Fig. 

3.3), given the efficient trophic transfer of phytoplankton through food webs (Rooney et 

al. 2006). During this time there would be relatively little detritus in the water column 
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(e.g. during spring blooms, Søreide et al. 2006). Energy derived ultimately from 

phytoplankton, but routed through the benthic channel (i.e. via phytodetritus), would 

reach upper trophic levels later in the season (towards the end of the bloom in late 

summer or fall, Fig. 3.3). One of the major elements through which asynchronous 

resources coupled in space confer stability to food webs is the top-down induced 

asynchrony in resource abundance between resource compartments (Rooney et al. 2006; 

McCann and Rooney 2009). Based on results of the present study, arctic food webs 

appear to be structured such that benthic and pelagic resource abundance is 

asynchronous, but driven by the bottom-up effect of pulsed phytoplankton growth, which 

is a different (but not exclusive) mechanism to that proposed by Rooney et al. (2006).  

 The possibility that ice algae, not phytoplankton, sinking to the benthos 

contributed to high ω3s and 16:1n-7 observed in the suspension feeding bivalves and 

scud in Cumberland Sound cannot be discounted (because ice and pelagic algae can have 

similar fatty acids; Søreide et al. 2008). However, based on low 20:4n-6 and high 16:1n-

7, 22:6n-3 and ω3:ω6 PUFAs, macroalgae was not the major source of energy to these 

species. Other potential energy sources not sampled here include terrestrial carbon, which 

can be very important to consumers in some arctic seas (e.g. Beaufort Sea, Dunton et al. 

2006). However, we found no evidence for the use of terrestrial carbon by the species 

sampled in Cumberland Sound because terrestrial material is depleted in 13C relative to 

carbon of marine origin (terrestrial -27 to -31‰, marine -22 to -25‰, Dunton et al. 

2006). POM samples from Cumberland Sound (-22.13‰), and primary consumers of 

phytoplankton (e.g. C. hyperboreus, -20.37‰) clearly had marine δ13C signatures. 
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 Drawing from recent food web theory (Rooney et al. 2006), any action that 

increases resource homogenization or decreases resource coupling by upper trophic levels 

could negatively impact arctic food webs (Rooney et al. 2008; McCann and Rooney 

2009). Global climate change is the most likely cause of such changes, which has already 

resulted in altered timing of primary production and community structure (reviewed by 

Wassmann et al. 2011). Predicting the consequences of warming temperatures is difficult 

(Carmack and Wassmann 2006), but plausible changes include: 1) decreased food 

quantity and quality (e.g. regarding polyunsaturated fatty acid content) reaching the 

benthos (due to less intense, lower quality phytoplankton production) (Weslawski et al. 

2011), and 2) decreased benthic biomass (due to increased habitat homogenization 

associated with permafrost melt and increased sedimentation) (Weslawski et al. 2011). 

On the other hand, macroalgae biomass could increase with decreased ice cover due to 

decreased ice scouring (Weslawski et al. 2011), and could become increasingly important 

for supporting benthic biomass in the face of decreased pelagic-benthic coupling.  

 From a top-down perspective, the northward expansion of mobile consumers into 

the arctic could impact the extent of resource coupling. Reductions in sea ice and warmer 

temperatures have already resulted in the once benthic-dominated community of the 

Bering Sea shifting towards dominance by pelagic fish (Hunt et al. 2002, Grebmeier et al. 

2006). Increasing contribution of pelagic consumers to arctic food webs, like capelin and 

herring (i.e. α>95, this study) that have already expanded into Cumberland Sound, could 

serve to decrease the presence of resource coupling in arctic food webs.  

 In summary, results from the present study indicate that the food web of an arctic, 

seasonally ice-covered fjord is structured in a similar manner to that previously reported 



80 

for other food webs. Specifically, heterogeneity in basal resources and feeding of 

consumers (within and between resource compartments) were found to exist even in a 

food web that experiences high seasonality. Previous assertions about arctic food webs 

(Iken et al. 2005; Renaud et al. 2011) were also supported because phytoplankton and 

phytodetritus were significant contributors to the food web, and the benthos consumed a 

range of different resource types. From a food web perspective, it is not changes in 

biomass or species composition, per se, but the removal of variability in resource use 

among, and perhaps within, species that is the biggest threat to arctic food web 

persistence. 
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Table 3.1. Functional group membership of species sampled from Cumberland Sound 

during summer (August) and associated codes for Fig. 1. Benthic herbivores are either 

filter-feeders (FF) or grazers (G). Major diet items are provided from locations as near to 

the east coast of Baffin Island as possible.  

Functional Group Species 
Fig. 1 
code 

Diet items 

Zooplankton    
herbivores Calanus hyperboreus  1 Phytoplankton1 

 
Mysis oculata* 2 phytoplankton, macroalgae2 

omnivores Aglantha digitale 3 phytoplankton, copepods, detritus3 

 
Myoxocephalus scorpius (larvae) 4 diatoms, Balanus naupulii4 

 
Stichaeus punctatus (larvae) 5 bivalve larvae5 

carnivores Sagitta sp. 6 zooplankton6 
Benthos    

herbivores Chlamys islandica (FF) 7 phytoplankton, detritus7 

 
Hiatella arctica (FF) 8 phytoplankton, detritus8 

 
Gammarus oceanicus (G) 9 Phytoplankton, macroalgae, detritus9 

 
Littorina (G) 10 algae10 

 
Tectura testudinalis (G) 11 algae10 

carnivores Buccinum cyaneum 12 polychaetes, bivalves, carrion11 

 
Nudibranch 13 unknown 

 
Polychaete 14 

predatory based on mouth parts (i.e. 
large fangs) 

Fish consumers    
pelagic Clupea harengus 15 zooplankton12, 13 

 
Mallotus villosus 16 zooplankton13 

 
Salvelinus alpinus 17 Themisto14, M. villosus12, Mysis12 

benthic Amblyraja hyperborea 18 Lebbeus polaris12 

 
Myoxocephalus scorpius  
(small, <24cm) 

19 Isopods, Mysis12,15 

 
Myoxocephalus scorpius  
(large, >24cm) 

20 C. harengus15,crab12,M. scorpius12 

benthic/pelagic Somniosus microcephalus 21 
P. hispida, R.  hippoglossoides, M. 

scorpius12 
Mammal 

consumers 
   

pelagic Phoca groenlandica 22 Themisto, M. villosus12 

 
Pusa hispida 23 Themisto12 

*benthic-associated but captured in zooplankton nets; References: 1Soreide et al. 2008; 2Dunton and Schell 
1987; 3Pages et al. 1996;4 LaRoche 1982;5 Pepin and Penney 1997; 6Pearre Jr. 1973;7 Bell and Sargent 
1985;8 Petersen et al. 2003;9 Hudon 1983;10 Steneck and Watling 1982;11Himmelman and Hamel 1993;12 
B.C. McMeans, unpublished data from Cumberland Sound ;13 Scott and Scott 1988;14 Moore and Moore 
1974;15 Cardinale 2000  
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Table 3.2. Sampling year, mean ± SD of δ13C  and δ15N (‰) and mean relative trophic 

positions (TP), proportional reliance on pelagic carbon (α) and carbon:nitrogen (C:N) for 

Cumberland Sound species sampled in August.  

Species Date n Tissue δ13C δ15N TP α C:N 

Primary producers 
        

POM 2008 1 W -22.13 8.24 
  

8.5 
Fucus sp. 2008 3 Leaf -14.87 ± 1.17 6.40 ± 1.08 

  
29.5 

 
2009 3 

 
-15.13 ± 1.80 7.49 ± 1.29 

  
32.1 

Invertebrates 
        

Aglantha digitale  2008 7 W -20.46 ± 0.26 10.12 ± 
0.39 

2.07 99 3.3 
Chlamys islandica 2008 5 M -18.63 ± 0.65 9.65 ± 0.16 1.93 59 3.3 
                                2009 5 M -18.79 ± 0.20 8.89 ± 0.38 1.71 53 3.3 
Hiatella arctica 2008 5 Ma -19.52 ± 0.23 8.14 ± 0.43 1.49 71 3.9 
Littorina sp. 2009 5 W -16.13 ± 0.62 9.39 ± 0.50 1.85 5 4.4 
Buccinum cyaneum 2008 5 F -17.27 ± 0.63 12.92 ± 

0.58 
2.90 46 3.5 

Tectura testudinalis 2008 5 F -15.96 ± 0.46 9.87 ± 0.19 2.00 4 3.7 
Nudibranch 2008 2 W -16.81 ± 0.23 13.54 ± 

0.18 
3.08 39 3.8 

Polychaete 2008 3 W -16.18 ± 0.80 11.21 ± 
0.93 

2.39 13 3.8 
Calanus hyperboreus 2008 5 W -20.37 ± 0.14 9.88 ± 0.53 2.00 98 3.5 
                                     2009 5 W -20.84 ± 0.49 9.90 ± 0.34 2.00 96 3.7 
Gammarus oceanicus 2008 7 W -18.55 ± 0.29 9.48 ± 0.71 1.88 57 5.0 
Mysis oculata 2009 5 W -20.79 ± 0.10 9.02 ± 0.13 1.74 95 3.6 
Sagitta sp 2008 2 W -19.25 ± 0.47 14.1 ± 0.01 3.17 94 3.2 

Elasmobranchs 
        

Somniosus microcephalus 2008 15 M -17.74 ± 0.67 17.07 ± 
0.68 

4.55 77 3.3 
Amblyraja hyperborea 2007 1 M -18.37 16.79 3.89 100 3.3 

Teleosts 
        

Clupea harengus 2007 1 M -19.85 13.40 2.89 100 3.4 
Salvelinus alpinus 2008 10 M -18.61 ± 0.23 14.51 ± 

0.64 
3.36 85 3.3 

Mallotus villosus 2008 7 M -19.37 ± 0.15 13.51 ± 
0.29 

3.07 96 3.3 
Myoxocephalus scorpius, la 2008 16 W -20.54 ± 0.44 10.54 ± 

0.27 
2.19 95 3.4 

Myoxocephalus scorpius, S 2008 3 M -17.99 ± 0.58 15.07 ± 
0.39 

3.53 74 3.3 
Myoxocephalus scorpius, L  2008 4 M -16.79 ± 1.07 17.17 ± 

1.14 
4.14 58 3.3 

Stichaeus punctatus, la 2009 18 W -21.09 ± 0.22 10.63 ± 
0.34 

2.22 100 3.4 
Mammals 

        
Phoca groenlandica (Pl) 2008 6 M -17.95 ± 0.13 14.66 ± 

0.55 
3.40 71 3.3 

Pusa hispida (Pl) 2008 4 M -18.40 ± 0.38 14.92 ± 
0.82 

3.48 82 3.4 
la=larval fish;S=small M. scorpius (<24cm); L=large M. scorpius (>24cm); Tissue analyzed-W: whole, M: 
muscle, Ma: mantle, F: foot
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Table 3.3. Fatty acids (% of total, mean ±SD) of organisms sampled from Cumberland Sound. Fatty acids were used as 

indicators of reliance on either phytoplankton (P) or macroalgae (M) among consumers. Tissue analyzed is the same as for 

stable isotopes (see Table 3.2), with the exception that blubber was analyzed for mammal fatty acids.  

1POM/seston from Stevens et al. 2004: sampled Autumn 1999 from southeast stations of North Water Polyna in surface waters. nr: not reported

Species Date n % Lipid  16:1n-7P  18:2n-6M  20:4n-6M  22:6n-3P  w3to6P 
POM (Stevens et al. 2004)1 1999 

 
nr 15.5 ± 4.5 1.7 ± 0.7 0.4 ± 0.3 8.5 ± 3.6 12.5 ± 3.6 

Fucus sp. 2008 3 4.3 ± 3 1.9 ± 1 13.7 ± 0.4 9.9 ± 3.6 0.5 ± 0.4 0.5 ± 0.1 
Invertebrates 

     
   

Chlamys islandica 2008 4 5.3 ± 0.4 3.2 ± 0.3 1.6 ± 1.2 1.5 ± 0.2 28.3 ± 1.4 13.2 ± 3.8 
                               2009 5 5.1 ± 0.2 2.7 ± 0.4 1.4 ± 0.8 1.4 ± 0.2 26.1 ± 2.5 6 ± 1.3 
Hiatella arctica 2008 5 9.4 ± 2 16.1 ± 3.2 1.8 ± 0.3 1.6 ± 0.6 14.7 ± 3.6 6.1 ± 0.4 
Buccinum cyaneum 2008 7 6.2 ± 0.8 1.1 ± 0.3 2.9 ± 3.8 4.6 ± 0.9 9.6 ± 1.3 3.3 ± 0.7 
Tectura testudinalis 2008 5 9 ± 3.1 4.7 ± 3.8 5 ± 3.3 12.9 ± 4.2 0.9 ± 0.2 1.1 ± 0.4 
Nudibranch 2008 1 10.9 1.1 8.6 8.7 18.9 2.5 
Polychaete 2008 3 8.4 ± 1.2 4.7 ± 1 2.3 ± 0.3 3.4 ± 0.3 2 ± 0.1 3.3 ± 0.3 
Calanus hyperboreus 2008 5 36 ± 3 17.3 ± 0.7 3.5 ± 0.1 0.2 ± 0 8.9 ± 1 3.9 ± 0.2 
Gammarus oceanicus 2008 2 10.4 ± 0.3 10.8 ± 0.4 4.6 ± 0.8 1.6 ± 0.2 5.1 ± 0.8 2.2 ± 0 
Mysis oculata 2009 5 10.3 ± 0.7 3.8 ± 1.2 1.8 ± 0.1 1.2 ± 0.1 24.1 ± 1.8 7.3 ± 1.1 

Fishes 
     

   
Somniosus microcephalus 2008 15 54.6 ± 3.3 6.8 ± 0.7 1.1 ± 0.1 1.5 ± 0.2 8.4 ± 0.8 4.5 ± 0.3 
Amblyraja hyperborea 2007 1 6.5 4.4 1.3 3.7 25.6 7.1 
Salvelinus alpinus 2008 7 22.7 ± 10.6 16.4 ± 6.1 1.5 ± 0.5 0.4 ± 0.1 10.9 ± 2.3 6.9 ± 1 
Mallotus villosus 2008 7 17 ± 10.2 7.2 ± 2.9 1.2 ± 0.2 0.4 ± 0.1 24.6 ± 10.4 14.9 ± 4.6 
Myoxocephalus scorpius 

(larval) 
2009 16 15.1 ± 2.8 7.4 ± 4.5 1.4 ± 0.7 1.0 ± 0.5 24.9 ± 5.8 9.7 ± 4.7 

Myoxocephalus scorpius (small) 2008 3 6.4 ± 0.5 7.1 ± 1.6 1.7 ± 0.4 2.3 ± 0.5 24.5 ± 3.4 8.3 ± 1.9 
Myoxocephalus scorpius (large) 2008 4 5.4 ± 1.1 4.6 ± 0.6 1.3 ± 0.1 4.4 ± 1.5 25.1 ± 4 6.9 ± 2.9 
Stichaeus punctatus (larval) 2009 17 13.9 ± 1.2 3.3 ± 0.6 0.7 ± 0.1 0.5 ± 0.1 34.1 ± 3.7 16.6 ± 3.3 

Mammals 
     

   
Phoca groenlandica 2008 6 88.6 ± 18.8 18.1 ± 3 1.8 ± 0.3 0.4 ± 0.1 9.3 ± 1.4 5.3 ± 0.3 
Pusa hispida 2008 6 89.9 ± 8.1 22 ± 5.1 1.6 ± 0.2 0.5 ± 0.3 9.5 ± 1.8 5.7 ± 1 
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Table 3.4. Significant differences in several food web metrics among Cumberland Sound 

functional groups based on three ANOVAs and one Kruskal-Wallis non-parametric 

ANOVA.  

TP: δ15N-derived trophic position; α: δ13C-derived % reliance on pelagic carbon; DF: degrees of freedom 

Metric Functional Group Test statistic DF P 

Vertical food web structure    

δ15N zooplankton = benthos < consumers F=255.01 2,150 <0.001 
TP zooplankton = benthos < consumers F=46.174 2,150 <0.001 

Horizontal food web structure    

δ13C zooplankton < consumers < benthos F=134.57 2,150 <0.001 
α benthos < consumers < zooplankton χ2=108.36 2 <0.001 
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Fig. 3.1. Percent (%) reliance on pelagic carbon (α) and trophic positions of benthos 

(black), zooplankton (white) and fish and marine mammal consumers (grey) from 

Cumberland Sound (mean ± SE, see Table 3.1 for number codes). Values of α are the 

results of a two-source δ13C mixing model with primary consumers of phytoplankton and 

macroalgae as baselines. Trophic positions were calculated using a one-source, δ15N-

based model. 
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Fig. 3.2. Results of non metric multidimensional scaling performed on: A) Fucus, zooplankton 

and benthos (dimensions = 2, stress = 0.04), and B) fish and marine mammal consumers 

(dimensions = 2, stress = 0.02) sampled during August in Cumberland Sound. Symbol colours 

reflect percent reliance on pelagic carbon (α) calculated from δ13C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

'L' and 's': large (>24cm) and small (<24cm), respectively
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Fig. 3.3. Hypothetical transfer of energy through fast (phytoplankton) and slow (macroalgae and phytodetritus) channels in an 

arctic marine food web during the spring/summer bloom (A) and towards the end of the bloom in late summer/fall (B). During 

the bloom, energy is rapidly and efficiently transferred through the pelagic pathway (some phytoplankton settling to the 

benthos indicated by dashed arrows, (A). As the bloom progresses, ample phytoplankton is reaching the sea floor, is exploited 

by the benthos and is eventually transferred through the benthic pathway (B). Macroalgae continues to be transferred from 

benthos to upper trophic levels during early (A) and late bloom (B) scenarios, although in lower quantities than phytoplankton 

(A) and phytodetritus (B). 
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CHAPTER 4 

SIMILARITY BETWEEN PREDATOR AND PREY FATTY ACID PROFILES IS 

TISSUE DEPENDENT IN GREENLAND SHARKS (SOMNIOSUS 

MICROCEPHALUS): IMPLICATIONS FOR DIET RECONSTRUCTION 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
McMeans, BC, Arts, MT, Fisk, AT. Similarity between predator and prey fatty acid 
profiles is tissue dependent in Greenland sharks (Somniosus microcephalus): implications 
for diet reconstruction. Submitted to Journal of Experimental Marine Biology and 
Ecology 
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INTRODUCTION 

 Sharks are important predators in marine and brackish waters, affecting prey 

populations both directly (i.e. predation) and indirectly (e.g. by generating predator 

avoidance behaviour) (Ferretti et al. 2010). However, a complete understanding of how 

sharks affect energy flow through food webs requires a detailed knowledge of their 

feeding ecology (Myers et al. 2007). Fatty acids (FA), which serve a multitude of 

biochemical functions in animals (e.g. cell membrane constituents, precursors to 

eicosanoids, energy source, Tocher 2003), are a promising tool for investigating the diet 

of marine predators like large sharks (Schaufler et al. 2005) that are difficult to study via 

traditional stomach content analysis. For example, the 'essential' FAs, arachidonic acid 

(ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 

22:6n-3), can often be used as dietary tracers because they cannot be biosynthesized by 

most marine consumers in amounts sufficient to meet their needs (Parrish 2009). 

Although some FAs (e.g. 16:0 and 18:0) can be biosynthesized by fishes, while others 

can be modified via chain shortening (e.g. 20:1n-9 to 18:1n-9) or elongation (e.g. 16:1n7 

to 18:1n-7) (Tocher 2003), it is generally accepted that the tissue FA profile of a 

consumer largely reflects FAs retained from the diet (Iverson 2009).  

Fatty acids have only recently been applied to investigate the diet of 

elasmobranchs (Schaufler et al. 2005; Semeniuk et al. 2007; Pethybridge et al. 2011; Wai 

et al. 2011). However, the current lack of data regarding how sharks alter dietary FAs 

prior to tissue incorporation is a major concern with this application. Predators are widely 

acknowledged to modify dietary FAs to meet their needs, which could lead to divergence 

between predator and prey profiles (Iverson 2009). Thus, the question becomes, how 

much, on a tissue-specific basis, will a predator modify dietary FAs and other lipids? 
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Based on the comprehensive work of Pethybridge et al. (2010), who identified inter-

tissue differences in the lipid class and FA profiles of 16 deep water Chondrichthyans 

from Australian waters, shark liver is high in storage molecules (e.g. triacylglycerol, 

TAG) and MUFA, whereas muscle is high in phospholipids and polyunsaturated fatty 

acids (PUFA). Subsequently, Chondrichthyan muscle can be more similar to PUFA-rich 

prey, and liver to MUFA-rich prey (Pethybridge et al. 2011). Based on results of the 

above studies, it is clear that elasmobranchs are selectively incorporating dietary FAs into 

different tissues.  

 It is still unclear, however, to what extent shark tissue FA profiles differ from FA 

profiles of dominant prey, or which tissue provides the most accurate information 

regarding diet. Captive feeding studies will help unravel the origin of FAs in shark 

tissues, although these studies will most likely be restricted to young and/or small sharks. 

Because differences in locomotory mode and phylogeny contribute to differences in lipid 

classes and FA profiles among shark species (Pethybridge et al. 2010), researchers 

wishing to apply FAs to study the ecology of large sharks in the wild would benefit from 

a directed assessment of how FAs differ between tissues of a large, mobile shark and 

those of known prey. 

 Here, within- and among-tissue variability in FA profiles of muscle, liver and 

blood plasma of 18 individual Greenland sharks sampled from Cumberland Sound, 

Nunavut, Canada, was investigated to identify the degree that shark tissue FA profiles 

differed from those of known prey items (based on stomach contents). The goal was to 

identify which tissues are the most useful for diet studies, and which tissues are the most 

altered by these sharks. Because elasmobranch liver functions as the major site of: 1) FA 
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catabolism (i.e. beta oxidation), 2) ketone body biosynthesis, and 3) buoyancy regulation 

(achieved through retention of lipids) (Ballantyne 1997), liver FAs are predicted to be the 

most modified by the sharks and to differ the most from prey profiles. Plasma, on the 

other hand, functions in transporting dietary FAs to other elasmobranch tissues via 

lipoproteins (e.g. chylomicrons) (Ballantyne 1997), and plasma FA are predicted to be the 

most similar to prey profiles. Elasmobranch muscle lacks the enzymes necessary to 

catabolize FA, and typically has low lipid levels (Ballantyne 1997). However, neutral, 

storage lipids, like TAG, are still present in shark muscle (Sargent et al. 1973), and 

muscle FAs are therefore predicted to provide some information about shark diet. The 

data presented here should help future researchers to more accurately apply FA to 

reconstruct the dietary history of large sharks. 

MATERIALS AND METHODS 

Sampling of Greenland sharks 

 Greenland sharks were sampled for the present study from Cumberland Sound, 

Nunavut, Canada. The Greenland shark is one of only two sharks known to regularly 

inhabit polar, ice-covered waters that reach temperatures <0ºC (the other being the 

Pacific sleeper shark, S. pacificus, Bigelow and Schroeder 1948). They reach a large size 

(of at least 6 m, Bigelow and Schroeder 1948), feed on a both teleost and marine mammal 

prey in Cumberland Sound (Fisk et al. 2002), and move throughout the water column 

from near the surface to several hundred meters depth in arctic waters (Skomal and Benz 

2004). Greenland sharks were sampled via bottom long line (set times=2-24 h) baited 

with either seal blubber or squid. Greenland sharks were sampled for the present study in 

April 2008 as part of a larger field campaign, which included subsequent sampling dates 
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in August 2008, April 2009 and August 2009. Trends between Greenland shark and prey 

fatty acids were similar when considering only the April 2008 data, or the pooled data 

(i.e. from all sampling dates combined). The data for the latter-sampled three seasons 

were therefore retained to present elsewhere to explore, in detail, seasonal and inter-

annual variability in diet of the Greenland shark (see Chapter 5).Greenland sharks were 

euthanized upon capture via an incision made through the dorsal surface (immediately 

behind the head, anterior to the gills) to sever the spinal cord and dorsal aortae, followed 

directly by a second incision through the brain. Blood was allowed to flow from the 

dorsal cut for several seconds before being collected into a centrifuge tube, immediately 

centrifuged in the field, removing the plasma using a sterile pipette, and transferring into 

a 2 mL cryovial. Five grams of dorsal muscle were collected ~2 cm above the vertebrae. 

Liver biopsies were taken by removing a cross section of one lobe, at approximately the 

mid-way point along the lobe's length, dissecting ~5 g from the center. All samples were 

immediately put on ice, and were frozen at -80°C (via dry ice or liquid nitrogen) within 1 

h from the time of collection. Stomach contents were identified to as low a taxonomic 

level as possible and counted for all 18  Greenland sharks (Table 4.1). Squid and mammal 

bait identified in shark stomachs was not included in these counts. However, hooked 

Greenland halibut that were found in the sharks' stomachs were included in counts 

because Greenland sharks are known to eat hooked halibut off of fishing lines during the 

winter artisinal fishery in Cumberland Sound (McMeans, Fisk, unpublished data), and 

because we used shark-specific fishing gear (i.e. metal leads and gangions), these halibut 

were not associated with our fishing operations. The exploitation of halibut off of Inuit 
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fishermen's lines would affect the FA profile of the sharks and is therefore relevant to the 

present study.  

 Prey sampling 

 Known prey of the Cumberland Sound Greenland sharks sampled here, based on 

stomach contents (Table 4.1), were sampled for fatty acid analysis and included: arctic 

skate (Amblyraja hyperborea), Greenland halibut (Reinhardtius hippoglossoides) and 

ringed seal (Pusa hispida). In addition, several potential prey of Greenland sharks were 

also sampled for fatty acid analysis, which have been previously identified in the 

stomachs of Greenland sharks from Cumberland Sound (B.C. McMeans, A.T. Fisk, 

unpublished data), and included arctic char (Salvelinus alpinus), harp seal (Phoca 

groenlandica) and narwhal (Monodon monoceros). The data for potential prey were 

included in the present study to assess how Greenland sharks tissue fatty acids compared 

to that of known prey (Table 4.1) as well as potential prey that may not have been 

captured by the sharks' stomachs contents. All prey species were collected from the shark 

sampling sites (near the mouth of Pangnirtung fjord, see Fig. 2.1 for a map of sampling 

locations). Char were collected via gill nets, skate and halibut via bottom long line (set 

times 2-4 h) and marine mammals were harvested by local Inuit hunters. Narwhal were 

sampled during August 2007, skate and halibut during April 2008 and Arctic char, ringed 

seal and harp seal during August 2008.  

 Because fish were found in shark stomachs either whole or as fragments of 

muscle and bone (Table 4.1), muscle was sampled from the dorsal surface of fish for FA 

analysis. The FA profile of Greenland halibut muscle reported here (Table 4.2), which 

was the dominant teleost prey of the Greenland sharks (Table 4.1), is similar to that 
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reported for conspecifics homogenized and analyzed whole (Andersen et al. 2004). For 

example, Greenland halibut analyzed whole (Andersen et al. 2004) and as muscle only 

(Table 4.2) had 18:1n9 in high and similar proportions (mean±SD = 15.8±0.2 and 15.5 ± 

2.3%, respectively). Thus, muscle likely accounted for most of the elasmobranch and 

teleost biomass consumed by Greenland sharks, and is a useful proxy for the FA profile 

of the dominant teleost prey. Because marine mammal tissue was found in Greenland 

shark stomachs predominantly as pieces of blubber (Table 4.1), and because blubber 

would contribute the most lipids to Greenland shark consumers (vs. other mammal 

tissues), the inner half of the dorsal surface blubber layer was sampled from marine 

mammals for FA analysis. All muscle and blubber samples for FA were placed in 

cryovials and frozen at -80°C within one hour after sampling.  

 Fatty acids were analyzed as detailed in Chapter 2 and McMeans et al. (2012).  

Data analysis 

 Data were obtained for 50 individual FAs, but analyses were restricted to 15 FAs 

that contributed mean values >1% to at least one shark tissue (these 15 FA are listed in 

Table 4.2). Together, these 15 FAs accounted for 92% of total shark plasma FAs and 

95% of total muscle and liver FAs. Coefficients of variation were calculated to compare 

variability in each FA proportion among Greenland shark tissues. Principal components 

analysis (PCA) was used to explore relationships between Greenland shark and prey FAs. 

Separate PCAs were performed on proportional data (Table 4.2) and absolute µg•mg-1 

data (Table 4.3). FAs reported as µg•mg-1 are highly sensitive to the % lipid of a sample, 

but are a useful way to ensure that, for example, high proportions of one FA are not 

driven by low proportions of another FA. PCA was a straightforward way to identify: 1) 
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which FAs explained the largest amount of variance in the data, and 2) which shark tissue 

was most similar to prey tissues based on underlying similarities in FA profiles. FA data 

were standardized to a mean of 0 and variance of 1 prior to inclusion in the PCAs and 

were left untransformed because logit transformation (i.e. log[FAi/(1 - FAi )]), which is 

effective for increasing normality and linearity of proportional data (Warton and Hui 

2011), did not alter PCA outputs. FA variable weights were extracted 'unscaled' (i.e. 

scaling=0) from the first two principal components (PC1 and PC2), and FA 'loadings' (i.e. 

correlations between each FA variable and each PC axis) were calculated by multiplying 

the unscaled FA weight by the square root of the eigenvalue for that principal component 

(McGarigal and Cushman 2000). Variables with loadings >0.63 were considered highly 

influential to that component (McGarigal and Cushman 2000). All analyses were 

performed in R (R Development Core Team 2010) and package 'vegan' (Oksanen et al. 

2010) was used for the PCA. 

RESULTS 

 Greenland halibut and ringed seal (adults and pups) were the most commonly 

identified prey in the Greenland sharks' stomachs (% occurrence=72.2 and 33.3%, 

respectively, Table 4.1). Greenland halibut muscle and ringed seal blubber (Table 4.1), 

had different FA profiles, with the former being dominated by proportions of 18:1n-9, 

20:1n-9, and 22:1n-11, and the latter having 16:1n-7, 18:1n-9 and DHA in the highest 

proportions (Table 4.2). FAs reported on a µg•mg-1 basis supported this pattern (Table 

4.3). Greenland shark plasma, liver and muscle had 18:1n-9 and 20:1n-9 in the highest 

proportions (Table 4.2). Plasma also had high proportions of DHA (10.6 ± 2.1%) and 

EPA (9.1 ± 1.8%) and muscle had high proportions of 16:0 (10.1 ± 0.8%) and DHA (8.8 
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± 1.3%). Liver, on the other hand, had 22:1n-11 and 18:1n-7 in the next highest amounts, 

and combined with 18:1n-9 and 20:1n-9, these four MUFA contributed to 67.0% of total 

liver FAs (Table 4.2). Blood plasma and liver were more variable than shark muscle 

based on their higher CV for FA proportions (Table S4.1). 

 The PCA of shark and prey proportions (Fig. 4.1A) revealed that the greatest 

amount of variance in the data was explained by the difference between Greenland shark 

liver and marine mammal blubber, based on the observation that PC1 separated shark 

liver from mammal blubber  due to higher proportions (positive loadings) of 20:1n-9, 

22:1n-11, 22:1n-9, and 24:1n-9 in the former and higher proportions (negative loadings) 

of 18:2n-6, EPA and 22:5n-3 in the latter (Fig. 4.1A). PC2 revealed a separation between 

skate (positive scores) and narwhal (negative scores) (Fig. 4.1A). All three Greenland 

shark tissues overlapped to some extent with at least one prey species, but shark muscle, 

liver and plasma all overlapped with Greenland halibut on PC1 (Fig. 4.1A). Shark muscle 

and plasma separated closer to marine mammal on the PCA than liver, and based on their 

overlap on PC1, shark muscle was more similar to plasma than liver (Fig. 4.1A). 

 Absolute µg•mg-1 data supported results from the FA proportions because shark 

muscle was more similar to the dominant prey, halibut and ringed seal, whereas shark 

liver was the most distant from the prey samples on the µg•mg-1 PCA (Fig. 4.1B). Thus, 

Greenland shark muscle was more similar to prey FA in both relative proportions (Fig. 

4.1A) and absolute µg•mg-1values (Fig. 4.1B) than shark liver. Plasma had much lower 

FAs on a µg•mg-1 basis relative to shark muscle and liver, and therefore separated from 

the other shark tissues on the µg•mg-1 PCA. 
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 Qualitative comparisons of FA proportions were made among individual 

Greenland sharks and individuals of dominant prey (halibut and ringed seal) (Fig. 4.2). 

Based on this comparison, FAs can be grouped into one of three categories as follows: 1) 

FAs that were generally similar (i.e. within a few %) in all three shark tissues to 

Greenland halibut and ringed seal (i.e. 18:0, 18:1n-7, 18:2n-6, 22:5n-3, Fig. 4.2A), 2) 

FAs that were higher in shark liver than prey values (i.e. 20:1n-9, 22:1n-11, 22:1n-9, 

24:1n-9, Fig. 4.2B), and 3) FAs that were higher in plasma and/or muscle than prey 

tissues (i.e. 18:1n-9, ARA, EPA, DHA, Fig. 4.2C). Specifically, for the latter group, 

shark muscle (and liver) were higher in proportions of 18:1n-9, shark muscle and plasma 

were higher in ARA, and shark plasma was higher in EPA and DHA relative to dominant 

prey species (Fig. 4.2C, Table 4.2). Absolute µg•mg-1 data for shark muscle and liver (but 

not plasma due to low FA µg•mg-1) generally supported the above categorizations. For 

example, from group 1, mean 18:1n-7 was between 36 and 39 µg·mg-1 in shark muscle 

and liver (Table 4.3). However, ringed seal had higher µg•mg-1 values of 22:5n-3 

(43.9±17.0 µg·mg-1) than shark tissues, but proportionally, all three shark tissues fell 

within the extreme values of 22:5n-3 exhibited by Greenland halibut and ringed seal 

(Table 4.2, Fig. 4.2A). From group 2, all prey had mean 22:1n-11 less than 60 µg·mg-1, 

but shark liver had a mean value of 115 µg·mg-1 (Table 4.3). From group 3, ARA was 

higher in shark muscle (8 µg·mg-1) than in any of the prey (all means ≤4.1 µg·mg-1) 

(Table 4.3), which supports the proportional data (Table 4.2).  

DISCUSSION 
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 The Greenland sharks sampled here consumed predominantly Greenland halibut 

and ringed seal based on stomach contents, which agrees with previously reported 

contaminant and stomach content data from Cumberland Sound Greenland sharks (Fisk et 

al. 2002). However, based on shark tissues-halibut overlap on PC1 of the proportions 

PCA, muscle, liver and plasma FA of Greenland sharks indicated a greater reliance on 

Greenland halibut. Agreement between stomach contents and FA indicates that all three 

tissues will therefore provide some information about diet for future explorations focused 

on the feeding ecology of these sharks. Because elasmobranch liver turns over more 

quickly than muscle (MacNeil et al. 2006), and plasma is known to be a short-term 

dietary indicator (Kӓkelӓ et al. 2009), differences in the relative magnitude of FAs 

between slow and fast turnover tissues could be used to identify differences in feeding 

behaviour over time. However, in agreement with previous findings from 16 species of 

Chondrichthyan (Pethybridge et al. 2010), inter-tissue differences were apparent, and 

Greenland sharks had higher PUFA in their muscle (∑PUFA=21.8% versus liver=14.6%) 

and higher MUFA in their liver (∑MUFA=78.8% versus muscle=65.4%). This pattern 

hints at underlying, baseline differences between the tissues that are likely related to 

different tissue requirements and roles in FA metabolism (Ballantyne 1997; Tocher 

2003), and stresses the need to consider tissue differences when interpreting FAs as 

indicators of shark diet. 

 Greenland sharks appeared to retain 18:0, 18:1n-7, 18:2n-6, and 22:5n-3 in their 

tissues in generally similar proportions that existed in their diet. Proportions of 18:0 and 

18:1n-7 were similar between Greenland halibut and ringed seal and all three shark 

tissues, whereas proportions of 18:2n-6 and 22:5n-3 in shark tissues generally fell in 
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between the values exhibited by dominant prey (Fig. 4.2A). Thus, the tissues of shark 

consumers should reflect a mixture of prey sources in these FA. Muscle and liver of 

European sea bass (Dicentrarchus labrax) were also similar to dietary proportions of 

18:0, 18:1n-7, 18:2n-6 and 22:5n-3 regardless of whether fish were fed a diet of 100% 

fish oil, or a mixed diet (40% fish and 10% rapeseed oil, Mourente and Bell 2006). It is 

noteworthy that several individual Greenland sharks had high proportions of plasma 

22:5n-3 that matched those observed in ringed seal (Fig. 4.2A), which could reflect recent 

seal consumption.  

 Lower 16:1n-7 proportions (Table 4.2) and µg·mg-1 values (Table 4.3) in shark 

tissues vs. prey indicates that this FA was selectively catabolized or was continually 

elongated to 18:1n-7 (Tocher 2003). Higher C20-C22 MUFA in shark liver vs. prey, on the 

other hand, indicates either selective retention of these FA from the diet, or accumulation 

as the products from chain shortening (partial beta oxidation, e.g. 22:1n-9 to 20:1n-9). 

Differences between shark liver and prey FA profiles, and high variability in liver FA 

among individual Greenland sharks, supports the prediction that liver would exhibit a 

high degree of FA modification, likely to meet requirements associated with metabolism 

and buoyancy (Ballantyne 1997).   

 Greenland shark muscle was the most similar of the tissues sampled to both 

halibut and ringed seal FA profiles, suggesting that dietary FAs are incorporated into the 

shark's muscle with little modification, and that Greenland shark muscle provides an 

accurate view of diet. Lower CV of muscle FAs indicates that muscle FA proportions 

were likely regulated to meet tissue-specific requirements to a greater degree than liver or 

plasma (Parrish 2009). Atlantic salmon muscle proportions of EPA and DHA did not 
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reflect differences obtained in their experimental diet, suggesting that these FA could be 

maintained at species-specific levels (Budge et al. 2011). However, calculated CVs were 

often similar among muscle, liver and plasma (e.g. 20:1n-9 CV: plasma=0.21, liver=0.18, 

muscle=0.16, Table S4.1), indicating that variability was present in muscle FAs among 

individual Greenland sharks that could have arisen from dietary differences. 

 Because polar lipids respond less to changes in diet than neutral lipids (Regost et 

al. 2003), one might expect shark muscle to be less responsive to diet than tissues like 

liver that are dominated by neutral storage molecules. The similarity between Greenland 

shark muscle and prey FA profiles is therefore somewhat surprising considering that 

shark muscle lacks the enzymes necessary to catabolize FAs (Zammit and Newsholme 

1979), and typically has low % lipid and high contribution of phospholipids (Pethybridge 

et al. 2010). However, shark species differ in muscle total lipid (Davidson et al. 2011) 

and % contribution of neutral lipids ( Sargent et al. 1973), suggesting that the ability to 

store FAs in muscle, and subsequently the responsiveness of shark muscle FA 

composition to diet, may also differ among shark species. Interestingly, Greenland shark 

muscle has higher % lipid (19±4%, ww, converted from dw values provided on Table 4.2 

using % water content of individual samples, B.C. McMeans unpubl. data) than other 

shark species analyzed to date (e.g. range among species reported in Pethybridge et al. 

2010: 0.37-1.87% ww). Squalids, including S. acanthias and the Pacific sleeper shark, 

also appear to have a higher contribution of storage molecules in their muscle than other 

sharks (e.g. S. acanthias muscle TAG+DAG=84.2%, Malins et al. 1965; Pacific sleeper 

shark muscle=73% TAG, Schaufler et al. 2005). Therefore, the muscle of sharks with 

lower % lipid may not align so closely with prey FA profiles as observed here in 
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Greenland sharks. Clearly, further work is required to determine the role of muscle lipids 

in some sharks, which could function as additional energy stores, or in buoyancy 

regulation (Malins and Barone 1970). 

 Because sharks likely do not mobilize large quantities of FAs from the liver to 

other tissues for energy (most extra-hepatic tissues rely on ketone bodies, Speers-Roesch 

and Treberg 2010), Greenland shark plasma FAs were expected to closely reflect dietary 

FAs. In support of this prediction, plasma FA proportions were similar to the Greenland 

halibut and ringed seal for most FAs (Fig 4.2). The similarity between shark plasma and 

muscle proportions supports the contention that muscle FA were of dietary origin. 

However, in addition to neutral FAs like TAG, the total lipid fraction of shark plasma 

also contains polar lipids (Craik 1978) that could feasibly be of both dietary and non 

dietary origin (e.g. inter-tissue routing of membrane lipids). The presence of non dietary 

lipids could explain the higher ARA, EPA and DHA proportions observed in Greenland 

shark plasma vs. dominant prey. Closer agreement between prey and plasma FA would 

be expected if the isolated chylomicron fraction were analyzed (e.g. Cooper et al. 2006) 

instead of total plasma lipids. However, even plasma FAs extracted from the total lipid 

fraction generally reflect dietary differences (Kӓkelӓ et al. 2009). The high variability in 

plasma FAs among Greenland sharks (i.e. high CV) suggests that shark plasma FA likely 

reflect a combination of differences in diet, inter-tissue routing of membrane FA and the 

duration since the last meal.  

 Our results for Greenland shark muscle, liver and plasma support findings from 

previous research in teleosts (Mourente and Bell 2006) and seabirds (Kӓkelӓ et al. 2009) 

that the relationship between consumer and dietary FAs is not always 1:1, and that fatty 
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acid differences among-species can be greater than variability within-species (Budge et 

al. 2002). However, qualitative differences in diet could still be explored by comparing 

FA profiles between- or within-shark species, because sharks that consume a greater 

quantity of a certain FA should still have higher proportions of that FA versus sharks that 

consume less. For example, C20 and C22 MUFA are biosynthesized by Calanus copepods 

and should differ among sharks that obtain different amounts of these FA in their diet. In 

fact, Greenland sharks from Cumberland Sound had 18% and 25% 20:1n-9 in their 

muscle and liver, respectively (Table 4.2), but Pacific sleeper shark muscle and liver from 

the Gulf of Alaska, as well as blubber from the Pacific sleeper sharks' stomachs, had <6% 

(Schaufler et al. 2005). Cumberland Sound halibut had high 20:1n-9 proportions 

(17.7±1.1%) and are a likely source of observed 20:1n-9 proportions in Greenland shark 

tissues. It therefore appears that C20 and C22 MUFA are useful dietary indicators in 

sharks, as long as similar proportions are not expected between shark liver and prey. 

  Results from the present field study provide new information about the degree 

that tissue FA profiles of a large shark differ from those of dominant prey. Further work 

is required to establish if the observed similarities and differences in shark-prey FA 

proportions (i.e. Fig. 4.2) are applicable to other elasmobranchs. Due to the multitude of 

habitats and temperatures that elasmobranchs occupy, and their wide range of locomotory 

modes and diets, differences among species are likely. Greenland sharks (and Pacific 

sleeper sharks) are clearly unique in their habitat (i.e. ice-covered seas), and their higher 

% lipid (Table 4.2) and contribution of MUFA to their muscle (Table S4.2). At ~40%, the 

deep-water Centroscymnus coelolepis and the coastal Carcharhinus obscurus, which are 

both highly mobile species (Compagno 1984a, b), come the closest to the muscle 
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∑MUFA of the Greenland shark (Table S4.2), but further work is required to determine 

the ubiquity of shark muscle as a dietary indicator. The liver of Greenland sharks, on the 

other hand, has a more comparable FA composition to other shark species, but is most 

similar to that of mobile, deep water species like Dalatias licha (Table S4.3). Thus, 

results for specific shark-prey FA differences identified here may be most directly 

applicable to large, mobile squaliforms. Based on inspection of Tables S4.2 and S4.3, it is 

clear that future work should address what factors govern differences in FA profiles 

among shark species. 

 Several general conclusions can be drawn from the present analysis that should be 

applicable to other sharks. First, researchers should not expect that shark FA profiles will 

exactly match that of dominant prey items, which is somewhat obvious and expected, but 

has implications for inferring diet based on shark-prey overlap on multivariate 

ordinations. Second, liver FA should be interpreted with care, due to potentially high 

modification of dietary FA profiles by shark consumers. Third, muscle fatty acid profiles 

of Greenland sharks were the most similar to that of known prey, but future studies are 

tasked with determining the ubiquity of this trend in other shark species. Finally, plasma 

FA are likely sensitive to the presence of some non-dietary lipid (if the total lipid fraction 

is analyzed), digestion and the timing since the last meal, but still appear useful for 

inferring shark diet. The sampling of muscle and plasma could be useful for future studies 

focused on large sharks that may be endangered or protected. Additional insights into the 

retention/ metabolism of dietary FAs could be gained from other FAs like 

polymethylene-interrupted FA and through controlled feeding studies performed on a 

variety of elasmobranch species.  
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Table 4.1. Stomach contents from 18 Greenland sharks (Somniosus microcephalus) 

sampled in Cumberland Sound, Nunavut, Canada. 

Sampling Date % occurrencea Tissue found 

Invertebrates 
  

Buccinum cyaneum 22.2 Whole or operculum 
Strongylocentrotus droebachiensis 11.1 Whole 
Squid spp. 11.1 Beaks 
 Gorgonocephalus arcticus 5.6 Whole 
Scavanging amphipodsb 33.3 Whole 

Elasmobranchii 
  

Amblyraja hyperborea 11.1 Sections of wing 
Teleostei 

  
Reinhardtius hippoglossoidesb 

72.2 Whole or pieces of skin and 
muscle3 

Myoxocephalus scorpius 27.8 Whole 
Lycodes reticulatus 11.1 Whole 
Lumpfish 5.6 Pieces of skin and muscle 

Mammalia 
  

Pusa hispida 
16.7 Pieces (blubber/ muscle) or 

intact body sections 

Pusa hispida pup 16.7 Whole 
Other 

  
skate egg 5.6 Whole 
unidentified teleost 38.9 Pieces of muscle 

Total fishc 77.8 
 

Total mammal 33.3 
 

a. % occurrence = # of stomachs containing that prey • total # of stomachs -1 
*100; b.including Orchomenella spp., Onisimus spp., Menigrates spp.; c. 
Total fish and mammal=# of stomachs containing any fish or mammal 
species, respectively, divided by total # stomachs
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Table 4.2. Fatty acid proportions (% of total, mean±SD) from the total lipid extract of Somniosus microcephalus and 

representative prey from Cumberland Sound.                                                                       

Species Tissuea n 16:0 16:1n-7 18:0 18:1n-9 18:1n-7 18:2n-6 20:1n-9 18:3n-3 22:1n-11 

S. microcephalus BP 12 8.8 ± 1.4 4.3 ± 1 2.4 ± 2.2 15.3 ± 2.1 4.5 ± 1.4 1.1 ± 0.3 16.4 ± 3.4 0.5 ± 0.7 9.9 ± 3.1 

L 18 4.2 ± 0.8 4.0 ± 1.6 1.3 ± 0.3 18.3 ± 2.2 6.1 ± 1.2 0.7 ± 0.2 24.7 ± 4.3 1.6 ± 1.2 17.9 ± 4.6 

M 18 10.1 ± 0.8 6.7 ± 1.3 1.3 ± 0.3 19.8 ± 2.1 7.1 ± 1 1.1 ± 0.1 17.9 ± 2.9 1.5 ± 0.6 9.5 ± 2.1 

A. hyperborea M 5 18.1 ± 0.7 3.0 ± 0.3 4.4 ± 0.5 8.1 ± 0.4 6.3 ± 0.4 1.5 ± 0.1 4.4 ± 0.9 0.3 ± 0 0.8 ± 0.5 

S. alpinus M 7 12.3 ± 1.9 16.4 ± 6.1 2.1 ± 0.3 11 ± 1.7 3.4 ± 1 1.5 ± 0.5 10.6 ± 6.7 0.5 ± 0.6 10.5 ± 5.1 

R. hippoglossoides M 9 10.0 ± 0.4 10.5 ± 0.6 2.0 ± 0.2 15.5 ± 2.3 6.6 ± 1.1 0.9 ± 0.1 17.7 ± 1.1 0.9 ± 0.8 16.2 ± 2.3 

P. hispida B 8 5.5 ± 0.9 21.3 ± 4.5 0.7 ± 0.3 18.5 ± 4 7.2 ± 1.2 1.7 ± 0.2 7.8 ± 3 0.4 ± 0.1 2.3 ± 2.8 

P. groenlandica B 15 5.4 ± 2.1 16.8 ± 2.8 0.9 ± 0.3 16.5 ± 4.1 6 ± 1.1 1.9 ± 0.3 12 ± 2.6 0.6 ± 0.2 5.5 ± 4.6 

M. monoceros B 7 6.4 ± 0.8 24.9 ± 2.4 1.1 ± 0.3 22 ± 1.8 6 ± 0.4 1.1 ± 0.1 9.9 ± 1.1 0.4 ± 0 4.2 ± 1.1 

Species 22:1n-9 20:4n-6 20:5n-3 24:1n-9 22:5n-3 22:6n-3 ∑SAFA ∑MUFA ∑PUFA %lipidb 

S.  microcephalus 2.9 ± 0.6 2.4 ± 0.7 9.1 ± 1.8 1.5 ± 0.3 2.7 ± 1.7 10.6 ± 2.1 12.9 ± 4.3 58.9 ± 5.8 28.2 ± 3.7 14.4 ± 4.8 
 

3.9 ± 0.6 0.8 ± 0.3 3.1 ± 1 1.9 ± 0.5 1.5 ± 0.7 5.1 ± 1.9 6.5 ± 1.3 78.8 ± 4.2 14.6 ± 3.5 78.8 ± 11.2 
 

2.0 ± 0.2 1.6 ± 0.3 5.6 ± 0.9 0.8 ± 0.1 1.7 ± 0.4 8.8 ± 1.3 12.7 ± 0.8 65.4 ± 2.2 21.8 ± 2.2 56.8 ± 5.9 
 

A. hyperborea 0.5 ± 0.1 3.3 ± 0.3 10.3 ± 1.3 0.3 ± 0.0 2.2 ± 0.2 30.5 ± 1.2 24.6 ± 0.9 25.3 ± 2.1 50.1 ± 1.9 6.6 ± 1.1 
 

S. alpinus 1.8 ± 0.7 0.4 ± 0.1 7.3 ± 2.5 0.6 ± 0.2 1.3 ± 0.3 10.9 ± 2.3 19 ± 1.5 56.7 ± 6.2 24.3 ± 5.2 22.7 ± 10.6 
 

R.  hippoglossoides 2.3 ± 0.2 0.4 ± 0.1 3.7 ± 0.7 0.7 ± 0.1 0.6 ± 0.1 4.8 ± 1.5 15.9 ± 0.6 70.9 ± 3 13.3 ± 2.5 39.9 ± 10.2 
 

P. hispida 0.5 ± 0.4 0.5 ± 0.2 8.5 ± 2 0.1 ± 0.1 5.4 ± 1.3 9.5 ± 1.5 10.6 ± 1.9 61 ± 3.6 28.3 ± 3.2 85.5 ± 11.7 
 

P. groenlandica 0.9 ± 0.5 0.3 ± 0.1 7.8 ± 1.9 0.2 ± 0.1 4.4 ± 1.2 9.6 ± 2.3 10.6 ± 3.3 62 ± 4.8 27.4 ± 4.6 73.9 ± 19.6 
 

M. monoceros 1 ± 0.2 0.3 ± 0 2.7 ± 0.7 0.1 ± 0.1 1.2 ± 0.3 2.5 ± 0.6 16.4 ± 1.4 73.9 ± 2.3 9.7 ± 1.7 70.1 ± 21 
 

a. BP=blood plasma, M=muscle, L=liver, B=blubber; b. Percent (%) lipid= mass of lipid • dry weight of sample-1; Full species names: Somniosus microcephalus, 
Ambylraja hyperborea, Salvelinus alpinus, Reinhardtius hippoglossoides, Pusa hispida, Phoca groenlandica, Monodon monoceros
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Table 4.3. Absolute fatty acid values (µg·mg-1 dry tissue, mean±SD) of Somniosus microcephalus and representative prey. 

Species Tissuea 16:0 16:1n-7 18:0 18:1n-9 18:1n-7 18:2n-6 20:1n-9 18:3n-3 22:1n-11 

S. microcephalus BP 4.3±2.2 2.1±1.4 1.1±0.8 7.6±4.4 2.4±1.9 0.5±0.3 8±4.8 0.4±0.7 4.9±3.4 

 
L 26.8±6.9 25.4±12.6 8.3±1.7 116.1±23.5 38.4±9.2 4.7±1.5 148±65.8 10.7±8.2 114.8±36.5 

 
M 50.9±6.9 34.5±10.8 6.7±1.8 100.2±17.8 35.9±7.3 5.7±1.1 89.6±16.7 7.2±3.1 47.9±12 

A. hyperborea M 5.4±1.1 0.9±0.3 1.3±0.4 2.4±0.6 1.9±0.5 0.5±0.1 1.4±0.6 0.1±0 0.3±0.2 
S. alpinus M 22±9 29.1±12.9 3.7±1.5 21.3±11.5 7.1±5.6 2.9±1.5 22±22.4 1.1±1.3 23.4±22.3 

R. hippoglossoides M 36.7±9.3 39.6±12.6 7.2±1.7 58.7±22.3 24.9±9.5 3.4±1.1 65.9±19.2 3±2.8 59.9±18.5 

P. hispida B 43.3±9.8 173.4±61.1 5±1.8 150.1±53.7 58.3±20 13.1±2.9 59.9±22.4 3.1±1.1 15.9±18 

P. groenlandica B 32.7±15.1 103±35.5 4.9±1.7 102.5±45.6 37.2±14.4 11.6±3.1 73.6±27.3 3.3±1.8 33.5±26.2 

M. monoceros B 34.2±12.9 133.4±44.6 5.8±1.9 116.7±36.4 32.5±11.9 5.8±2 52.3±18.9 2.1±0.8 22.4±11.2 
 

Species 22:1n-9 20:4n-6 20:5n-3 24:1n-9 22:5n-3 22:6n-3 ∑SAFA ∑MUFA ∑PUFA 

S. microcephalus 1.4±0.7 1.2±0.9 4.4±2.6 0.7±0.3 1.1±0.5 5±2.6 6.1±3.2 28.7±15.9 13.5±7.5 

 
24.8±6 4.9±1.6 20.1±8.7 12.2±3.4 9.7±5.1 33.1±14.2 41.1±9.9 504.1±94.4 94.5±31.9 

 
10.0±1.8 8.0±1.8 28.6±7.2 3.9±0.8 8.6±3.2 44.3±10.2 64.2±9.5 331±51.7 110.6±22.1 

A. hyperborea 0.2±0.1 1.0±0.1 3.1±0.6 0.1±0 0.7±0.1 9.2±1.9 7.4±1.6 7.7±2.2 15±2.8 

S. alpinus 3.6±2.4 0.6±0.1 12.4±3.8 1.3±0.8 2.3±0.9 18.8±5.6 35.4±17.3 112.6±73.3 42.3±14.1 

R. hippoglossoides 8.3±2 1.3±0.3 13.3±2.6 2.6±0.7 2±0.6 16.5±2.4 58.7±15.5 265±81.6 47.1±7.6 

P. hispida 3.7±2.8 4.1±2.7 69.2±26 0.5±0.5 43.9±17 75±17.9 83.2±15.7 487.8±119.2 227.8±62.6 

P. groenlandica 5.5±3.6 1.9±0.7 48.1±18.1 1±0.8 27±11.6 59.6±23.3 64.4±25.5 381.5±119.9 168.3±57.5 

M. monoceros 5.4±2 1.5±0.6 15±8 0.4±0.5 6.7±3.4 14±7.5 88.3±30.3 393.6±127.2 53.4±25.2 
a. BP=blood plasma, M=muscle, L=liver, B=blubber; Full species names: Somniosus microcephalus, Ambylraja hyperborea, Salvelinus alpinus, Reinhardtius 
hippoglossoides, Pusa hispida, Phoca groenlandica, Monodon monoceros
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Fig. 4.1. Principal component analysis of fatty acid proportions (A: % of total) and µg 

fatty acid • mg dry tissue-1 values (B) of Greenland sharks (Somniosus microcephalus) 

(muscle, liver and plasma) and several known teleost and marine mammal prey. Fatty 

acids that were highly correlated (>0.63) with each principal component axis are 

provided.  
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 Fig. 4.2. Fatty acid proportions (% of total) of individual Greenland shark plasma (P), liver (L), and muscle (M) and values for the sharks' 

dominant prey, Greenland halibut (muscle) and ringed seal (blubber). Fatty acids are separated by shark-prey: A) similarity, B) higher 

values in shark liver, and C) higher values in shark plasma and/or muscle. Note the different scales of the y axes. 
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SUPPLEMENTARY MATERIAL 

Table S4.1. Coefficients of variation for Somniosus microcephalus tissue fatty acid 

proportions. 

Fatty acid Plasma Liver Muscle 

n 12 18 18 
16:0 0.16 0.20 0.08 

16:1n-7 0.24 0.39 0.20 
18:0 0.90 0.21 0.23 

18:1n-9 0.14 0.12 0.11 
18:1n-7 0.30 0.20 0.14 
18:2n-6 0.23 0.25 0.10 
20:1n-9 0.21 0.18 0.16 
18:3n-3 1.43 0.75 0.42 
22:1n-11 0.31 0.26 0.22 
22:1n-9 0.21 0.17 0.11 
20:4n-6 0.30 0.32 0.17 
20:5n-3 0.20 0.32 0.15 
24:1n-9 0.21 0.24 0.16 
22:5n-3 0.61 0.45 0.25 
22:6n-3 0.20 0.36 0.15 
∑SAFA 0.33 0.20 0.06 
∑MUFA 0.10 0.05 0.03 
∑PUFA 0.13 0.24 0.10 
%lipid 0.33 0.14 0.10 
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Table S4.2. Muscle ∑saturated fatty acids (SAFA), ∑monounsaturated fatty acids (MUFA), and ∑polyunsaturated fatty acids 

(PUFA) (proportions, mean values) for various shark species sampled from northern, tropical and subtropical waters.  

Order 
     Family 

Species SAFA MUFA PUFA 
Sampling 
location 

Reference Dominant habitat 

Squaliformes 
       

Centrophoridae Centrophorus squamosus 20.3 25.5 54.3 North Atlantic Økland et al. 2005 rare above 1000ma 

 
Centrophorus zeehaani 31.3 21.9 42.3 Australia Pethybridge et al. 2010 upper slope, 200-650mc 

 
Deania calcea 23.9 21.7 48.1 Australia Pethybridge et al. 2010 mid slope, 650-1200mc 

Dalattidae Dalatias licha 26.2 30.5 38.0 Australia Pethybridge et al. 2010 mid slope, 650-1200mc 
Etmopteridae Centroscyllium fabricii 17.9 26.0 56.1 North Atlantic Økland et al. 2005 200-500ma 

 
Etmopterus baxteri 20.2 30.6 39.7 Australia Pethybridge et al. 2010 mid slope, 650-1200mc 

Somniosidae C entroselachus crepidater 24.8 25.0 45.5 Australia Pethybridge et al. 2010 mid slope, 650-1200mc 

 
Centroscymnus coelolepis 15.3 36.7 48.0 North Atlantic Økland et al. 2005 bathypelagic usually> 400ma 

 
Centroscymnus owstoni 24.7 21.9 44.7 Australia Pethybridge et al. 2010 mid slope, 650-1200mc 

 
Proscymnodon plunketi 26.5 21.7 46.0 Australia Pethybridge et al. 2010 mid slope, 650-1200mc 

 
Somniosus microcephalus 13.0 64.3 22.7 Nunavut this study benthopelagic, 0-1200ma 

 
Somniosus pacificus 17.4 59.5 23.1 Gulf of Alaska Schaufler et al. 2005 benthopelagic, 0-2000ma 

Sqalidae Squalus acanthias 18.4 34.5 34.0 Australia Pethybridge et al. 2010 shelf, 0-200mc 

 
Squalus megalops 27.7 23.4 44.0 Australia Pethybridge et al. 2010 shelf, 0-200mc 

Carcharhiniformes 
       

Carcharhinidae Carcharhinus brevipinna 29.0 35.0 23.0 South Africa Davidson et al. 2011 coastal, shelf b 

 
Carcharhinus leucas 31.0 29.0 35.0 South Africa Davidson et al. 2011 coastal, estuarine b 

 
Carcharhinus limbatus 32.0 26.0 40.0 South Africa Davidson et al. 2011 coastal b 

 
Carcharhinus obscurus 30.0 40.0 21.0 South Africa Davidson et al. 2011 coastal, shelf b 

 
Galeocerdo cuvier 30.0 30.0 33.0 South Africa Davidson et al. 2011 coastal, shelf b 

Scyliorhinidae Apristurus sinensis 26.7 24.5 45.0 Australia Pethybridge et al. 2010 mid slope, 650-1200mc 

 
Figaro boardmani 27.3 20.9 45.8 Australia Pethybridge et al. 2010 upper slope, 200-650mc 

Sphyrnidae Sphyrna lewini 31.0 22.0 44.0 South Africa Davidson et al. 2011 coastal, shelf, semioceanic b 

 
Sphyrna zygaena 31.0 22.0 35.0 South Africa Davidson et al. 2011 coastal, shelf, semioceanic b 

Lamniformes 
       

Lamnidae Carcharodon carcharias 35.0 25.0 30.0 South Africa Davidson et al. 2011 coastal, shelf a 
Odontaspididae Carcharias taurus 31.0 25.0 36.0 South Africa Davidson et al. 2011 coastal, shelf a 

a. Compagno, L.J.V. 1984. FAO Species Catalogue. Vol. 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Part 1-
Hexanchiformes to Lamniformes. FAO Fish. Synop. 125(4/1): 1-249. b. Compagno, L.J.V. 1984. FAO Species Catalogue. Vol. 4. Sharks of the world. An annotated and 
illustrated catalogue of shark species known to date. Part 2-Carcharhiniformes. FAO Fish. Synop. 125(4/2): 251-655. C. Daley, R.K., Stevens, J.D., Last, P.R., Yearsley, 
G.K. 2002. Field guide to Australian sharks and rays. CSIRO, Victoria., b) 
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Table S4.3. Mean proportions of liver ∑saturated fatty acids (SAFA), ∑monounsaturated fatty acids (MUFA), and ∑polyunsaturated fatty 
acids (PUFA) for various shark species sampled from northern, tropical and subtropical waters.  
Order 
       Family 

Species SAFA MUFA PUFA Sampling 
location 

Reference Dominant habitat 

Hexanchiformes 
       

Hexanchidae Notorynchus cepedianus 29.1 41.9 26.5 Australia Pethybridge et al. 2010 shelf, 0-200mb 
Squaliformes 

       
Centrophoridae Centrophorus moluccensis 25.6 62.2 0.6 Australia Bakes and Nichols 1995 outer shelves, 130-800ma 

 
Centrophorus zeehaani 26.7 57.9 12.1 Australia Pethybridge et al. 2010 upper slope, 200-650mb 

 
Deania calcea 26.4 63.0 8.1 Australia Pethybridge et al. 2010 mid slope, 650-1200mb 

Dalattidae Dalatias licha 15.2 70.9 11.6 Australia Pethybridge et al. 2010 mid slope, 650-1200mb 
Etmopteridae Etmopterus baxteri 16.2 76.9 4.6 Australia Pethybridge et al. 2010 mid slope, 650-1200mb 

 
Etmopterus granulosus 15.0 80.0 2.5 Australia Bakes and Nichols 1995 outer shelves, 200-600ma 

Somniosidae C entroselachus crepidater 17.9 71.6 8.4 Australia Pethybridge et al. 2010 mid slope, 650-1200mb 

 
Centroscymnus coelolepis 18.6 60.0 20.2 Australia Pethybridge et al. 2010 mid slope, 650-1200mb 

 
Proscymnodon plunketi 11.9 81.8 3.9 Australia Pethybridge et al. 2010 mid slope, 650-1200mb 

 
Somniosus microcephalus 6.9 77.6 15.5 Nunavut this study benthopelagic, 0-1200ma 

 
Somniosus pacificus 16.2 70.2 13.6 Gulf of Alaska Schalufler et al. 2005 benthopelagic, 0-2000ma 

 
Somniosus pacificus 12.5 72.0 13.3 Australia Bakes and Nichols 1995 benthopelagic, 0-2000ma 

Sqalidae Squalus acanthias 23.1 57.3 14.7 Australia Pethybridge et al. 2010 shelf, 0-200mb 

 
Squalus chloroculus 20.4 61.6 13.4 Australia Pethybridge et al. 2010 shelf, 0-200mb 

 
Squalus megalops 15.8 58.8 15.8 Australia Pethybridge et al. 2010 upper slope, 200-650mb 

Carcharhiniformes 
       

Carcharhinidae Carcharhinus brevipinna 43.3 29.8 26.9 South Africa Davidson and Cliff 2002 coastal, shelf b 

 
Carcharhinus leucas 41.5 40.6 18.0 South Africa Davidson and Cliff 2002 coastal, estuarine b 

 
Carcharhinus limbatus 43.8 32.1 24.4 South Africa Davidson and Cliff 2002 coastal b 

 
Carcharhinus obscurus 39.3 38.4 22.6 South Africa Davidson and Cliff 2002 coastal, shelf b 

 
Galeocerdo cuvieri 39.0 42.8 18.2 South Africa Davidson and Cliff 2002 coastal, shelf b 

Scyliorhinidae Apristurus sinensis 15.8 72.6 9.8 Australia Pethybridge et al. 2010 mid slope, 650-1200mc 

 
Figaro boardmani 23.2 45.3 29.4 Australia Pethybridge et al. 2010 upper slope, 200-650mc 

Sphyrnidae Sphyrna lewini 36.2 43.1 20.8 South Africa Davidson and Cliff 2002 coastal, shelf, semioceanic 
b Lamniformes 

       
Odontaspididae Carcharias taurus 37.1 36.4 26.6 South Africa Davidson and Cliff 2002 nearshore, coastala 

a. Compagno, L.J.V. 1984. FAO Species Catalogue. Vol. 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Part 1-
Hexanchiformes to Lamniformes. FAO Fish. Synop. 125(4/1): 1-249. b. Compagno, L.J.V. 1984. FAO Species Catalogue. Vol. 4. Sharks of the world. An annotated and 
illustrated catalogue of shark species known to date. Part 2-Carcharhiniformes. FAO Fish. Synop. 125(4/2): 251-655. C. Daley, R.K., Stevens, J.D., Last, P.R., Yearsley, 
G.K. 2002. Field guide to Australian sharks and rays. CSIRO, Victoria. 
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CHAPTER 5 

INDIVIDUAL SPECIALIZATION IN GREENLAND SHARKS (SOMNIOSUS 

MICROCEAPHLUS) 
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INTRODUCTION 

 It has been widely hypothesized that generalist vs specialist feeding behaviour 

(i.e. whether a given species consistently consumes many and variable vs few and 

invariable types of prey) directly affects food web persistence in ecological communities 

(MacArthur 1955). MacArthur (1955) suggested that in regions of low diversity, such as 

at high latitudes, species consume a wider range of prey items, thereby increasing food 

web persistence. Empirical studies have shown that generalist feeding at multiple trophic 

levels across spatial and temporal boundaries is common in real food webs (Polis 1991; 

Polis and Strong 1996; Vander Zanden and Vadeboncoeur 2002). Theoretical models 

further suggest that the ability of generalists to move across spatial boundaries and 

consume multiple resources as they become available (i.e. spatial resource coupling) 

imparts a flexible nature to food webs (Rooney et al. 2006). These results strongly 

suggest that consumers, especially those inhabiting low diversity and/or temporally 

variable environments, should feed as generalists (MacArthur 1955). However the way in 

which generalist populations moderate food web persistence is complicated by recent 

evidence that many generalist populations are in fact composed of specialist individuals 

that feed on a specific subset of the populations' total resources (reviewed by Bolnick et 

al. 2003; Araújo et al. 2011).   

 Distinguishing between populations with high amounts of individual generalism 

(IG) and those dominated by individual specialization (IS) is not trivial and has major 

consequences for food web-level processes (Bolnick et al. 2011). While high IS in a 

predator population may be destabilizing by limiting the extent of spatial resource 

coupling (Bolnick et al. 2011), it may also promote food web persistence by increasing 

the frequency and decreasing the strength of any one inter-specific interaction (McCann 
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et al. 1998; Bolnick et al. 2011). The offsetting of these IS effects in generalist 

populations suggest generalist feeding may be both less common and potentially less 

important for food web persistence than previously thought. Further complicating this 

issue is the potential for IG and IS to vary in time within a population (e.g. with season, 

Herrera et al. 2008).  

 To understand the extent and dynamics of IS and IG within populations requires a 

metric for specialization that can be readily compared within and among populations. 

Because an individual specialist will have a smaller niche (i.e. lower diet variance) 

relative to the populations' total niche than an individual generalist, the degree of IS in a 

given population can be estimated as the ratio of within-individual diet variation (WIC, 

within-individual component) to the diet variation of the total population (TNW, total 

niche width, equal to WIC + the level of between-individual diet variation (BIC, 

between-individual component); (Bolnick et al. 2002). Values of WIC/TNW close to zero 

indicate high IS and values approaching 1 indicating high IG (Bolnick et al. 2002).  

 Chemical tracers, such stable isotopes of nitrogen (δ15N) and carbon (δ13C) are 

useful for estimating WIC and TNW because they are integrated within consumers 

tissues over time (Bolnick et al. 2002). High variance in stable isotopes among tissues 

with different turnover times is indicative of a consistently variable diet over time (i.e. 

IG), whereas low variance indicates IS (Bolnick et al. 2002; Bolnick et al. 2003; Araújo 

et al. 2011). However, stable isotopes normally provide information only about the 

proteinacious diet component, as tissues are conventionally lipid extracted prior to 

analysis to remove the bias associated with 13C-depleted lipids (Post et al. 2007; Hussey 

et al. 2010). Fatty acids on the other hand, being dietary tracers that are integrated into a 
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predator's tissues over time (Iverson 2009), could provide information about IS in 

predators with high fat diets (e.g. mammal blubber, fatty fish). Fatty acids have been 

successfully used to track resource use in arctic animals, from zooplankton (Falk-

Petersen et al. 2009) and benthic fish (Graeve et al. 1997) to sharks (Schaufler et al. 

2005), seals (Falk-Petersen et al. 2009) and polar bears (Grahl-Nielsen et al. 2003).  

 Here, fatty acids were analyzed in three tissues (muscle, liver, plasma) of 

Greenland sharks (Somniosus microcephalus) sampled from Cumberland Sound, Canada 

during summer (August) and winter (April) of 2008 and 2009, to answer two questions: 

(1) What is the extent of individual diet specialization in a theoretically generalist, high-

latitude population, and (2) does the level of individual specialization present vary with 

season and/or year? The Greenland shark is the only shark to inhabit ice-covered seas in 

the North Atlantic, and is widely presumed to feed as an opportunist/generalist (recently 

reviewed by MacNeil et al. 2012). Because the Greenland shark's diet includes lipid-rich 

prey (e.g. fatty teleosts like Greenland halibut, Reinhardtius hippoglossoides and marine 

mammals like ringed seal, Pusa hispida, see Chapter 4), fatty acids are an appropriate 

tool for exploring resource use among individual sharks. Although no population size 

estimates exist for Greenland sharks, the species is commonly caught in Cumberland 

Sound (>15 individuals 100 hooks-1 using shark-specfic gear,  MacNeil et al. 2012) and is 

therefore likely abundant. As such, intra-specific competition could be high and the 

prediction is that IS will be high (Svanbäck and Bolnick 2005; Araújo et al. 2011). 

Although no biomass data exist for Cumberland Sound, winter marine food webs tend to 

be less complex than summer food webs due to migration (Johnson et al. 2009). Thus, a 

more diverse array of prey are expected to be available in summer, with the prediction 
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being that the extent of IS in Greenland sharks will change with season and be higher in 

summer than in winter (see Fig. 1.2 for visual representation of these hypotheses).  

MATERIALS AND METHODS 

Sample collection 

 Four sampling events were performed in Cumberland Sound: two during summer, 

open water (August 2008 and 2009) and two during winter, ice cover (April 2008 and 

2009). All samples were collected within or up to 30 km of the mouth of Pangnirtung 

fjord (see Chapter 2, Fig. 2.1 for map of sampling locations). Greenland sharks were 

caught via bottom long-lines, set from boats during summer and through holes cut in the 

sea ice in winter, and immediately euthanized via an incision through the dorsal surface 

(immediately anterior to the first gill slit) to sever the spinal cord followed by a second 

incision through the brain. Blood was allowed to flow from the dorsal cut for several 

seconds before being collected into a centrifuge tube with no lining or additives. One 

exception is the blood sampled in August 2009, which was collected from the caudal vein 

using a syringe. Blood was centrifuged immediately in the field and the plasma portion 

was separated from the whole blood fraction using a sterile pipette. There was no effect 

of blood collection method on fatty acids because the range of August 2009 plasma 

22:5n-3 was within the range of the other sampling dates (Table S5.1), and there was no 

significant difference in plasma 22:5n-3 among sampling dates (see Results section). 

Approximately 5 g of dorsal muscle were collected ~2 cm above the vertebrae and liver 

biopsies (~5 g) were taken from the mid-way point along one liver lobe's length. In total, 

59 Greenland sharks were sampled, but data are only presented for sharks that had all 

three tissues sampled. Based on the Greenland sharks' stomach contents, the dominant 
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prey items, Greenland halibut and ringed seal (Chapter 4), were sampled for fatty acids. 

Greenland halibut were sampled during April 2008 and 2009 using bottom long-lines set 

through the sea ice, and ringed seals were shot during Inuit subsistence hunting during 

August 2008 and April 2008. Muscle and blubber were sampled from halibut and ringed 

seal, respectively, because these tissues should represent the largest biomass of lipid 

consumed by Greenland sharks. All samples were placed immediately on ice and were 

frozen on dry ice or in liquid nitrogen within 1 h.  

Lipids were extracted from all tissue samples using a 2:1 chloroform: methanol 

solution (Folch et al. 1957) and fatty acid methyl esters (FAME) were generated from the 

total lipid extract as detailed in Chapter 2 and McMeans et al. (2012).  

Choice of fatty acid 

 It is widely acknowledged that the fatty acid proportions observed in a predators 

tissues do not match the proportions observed in the diet (e.g. Andersen et al. 2004, 

Budge et al. 2011, Grahl-Nielsen et al. 2003, 2011). However, to effectively interpret 

variable or similar values of a given fatty acid among shark tissues as evidence for IG or 

IS, respectively, required that: 1) sharks have similar magnitudes of this fatty acid among 

the three tissues when at equilibrium and 2) that the fatty acid value of the sharks' tissues 

reflect the amount of that fatty acid obtained in the diet. A preliminary assessment of the 

tissue fatty acid data revealed that 22:5n-3 appeared to meet both of these requirements 

(Chapter 4, B.C. McMeans, M.T. Arts, A.T. Fisk, submitted manuscript). Specifically, 

although there was no way of assessing what the fatty acid profile of a Greenland shark 

would be at equilibrium, the magnitude of 22:5n-3 is generally similar among Greenland 

shark muscle, liver and plasma, unlike other fatty acids like 22:6n-3 that tend to 
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accumulate in muscle and 20:1n-9 that accumulate in the sharks' liver (Chapter 4, B.C. 

McMeans, M.T. Arts, A.T. Fisk, submitted manuscript). Second, values of 22:5n-3 in 

Greenland shark muscle, liver and plasma fall in between the extreme values exhibited by 

Greenland halibut muscle and ringed seal blubber, such that the sharks appear to 

incorporate similar amounts of this fatty acid into their tissues as obtained in the diet (Fig. 

5.1). Previous controlled feeding trials have found that dietary differences in 22:5n-3 are 

reflected in the tissues of both fish (Bell et al. 2003; Arts et al. 2010; Budge et al. 2011) 

and avian predators (Iverson 2009), supporting the use of 22:5n-3 as a dietary indicator in 

the present study.  

Choice of tissues and tissue turnover 

 A major assumption of the present work is that fatty acids of different tissues 

reflect different time frames of the sharks' diet. To this end, shark tissues were sampled, 

based on knowledge derived from captive feeding studies performed predominantly in 

mammals, which function in fatty acid storage and are dominated by molecules like 

triacylglycerol (TAG). Such tissues should have faster turnover times than tissues which 

have structural functions or have low % lipid and tend to be dominated by phospholipids 

(Budge et al. 2006). The large, lipid-rich liver is the major fatty acid storage site in sharks 

(Ballantyne 1997), such that liver should have a faster turnover rate than more structural 

tissues like muscle. This does appear to be the case in the protein portion of shark liver vs 

muscle based on stable isotopes (MacNeil et al. 2005). Further, the Greenland shark has 

high % lipid in both liver and muscle, such that both tissues likely function in fatty acid 

storage (Chapter 4, B.C. McMeans, M.T. Arts, A.T. Fisk, submitted manuscript) and 

should both be good indicators of diet. The fact that the Pacific sleeper shark (Somniosus 
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pacificus) has liver and muscle dominated by storage molecules (78 and 73% TAG, 

respectively, Schaufler et al. 2005) and that both tissues reflected the sharks' consumption 

of planktivorous whales supports this suggestion. Plasma was chosen for analysis in 

addition to liver and muscle because it is the vehicle for transferring dietary fatty acids to 

the tissues, and will logically have a faster turnover time than lipids incorporated into 

muscle or liver (Budge et al. 2006). 

 Unfortunately no studies exist to estimate the specific turnover time of fatty acids 

in shark muscle, liver or plasma. Previous controlled feeding studies performed on 

Atlantic salmon, a teleosts with high fat in both muscle and liver (i.e. similar to 

Greenland sharks), indicated that postsmolts, which grew to 30 cm over the course of the 

experiment, reflected the fatty acid profile of their diet in both muscle and liver after 12 

weeks (Budge et al. 2011). Adipose tissue of seabirds also reflects past diet on the scale 

of weeks (Budge et al. 2006). Finally, Hazel and Neas (1982) found that microsomal 

membrane lipids of rainbow trout (Salmo gairdneri) turned over faster in liver (t1/2=3.4-

6.8 d) than muscle (t1/2=8.1-14.8 d), supporting the sampling of muscle and liver as 

indicators of different dietary time frames for the present study. Due to the large size and 

cold habitat of the Greenland shark, their muscle and liver fatty acids likely reflect diet 

incorporation on the scale of months, not weeks. Regarding plasma, a previous controlled 

feeding study in herring gulls, Larus argentatus, revealed that consumption of different 

fish species (with different fatty acid signatures) was reflected in the birds' plasma within 

5 d (Kӓkelӓ et al. 2009). Digestion is slow in Greenland sharks (Leclerc et al. 2012), such 

that plasma could reflect a longer incorporation time in sharks than seabirds, although 
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turnover is almost certainly faster than the sharks' muscle or liver, and on the scale of 

days or weeks instead of months. 

Data analysis 

 Three separate ANOVAs followed by Tukey's post hoc comparisons were used to 

compare proportions of 22:5n-3 in muscle, liver and plasma among sampling dates (i.e. 

April 2008, August 2008, April 2009, August 2009). Liver 22:5n3 was logit transformed 

prior to analysis to increase normality (Warton and Hui 2011). ANOVA and Welch's t 

test were used to compare 22:5n-3c in ringed seals and Greenland halibut among 

sampling dates, respectively. 

 The four metrics defined by Bolnick et al. (2002) for continuous data were 

calculated to quantify IS in Greenland sharks: 1) BIC, 2) WIC, 3) TNW = BIC+WIC and 

4) WIC/TNW (Table 5.1). Metrics were estimated in two ways. First, a linear mixed-

effects model was run on proportions of 22:5n-3, with tissue (muscle, liver, plasma) as a 

fixed effect and individual shark as a random effect. BIC was estimated from the among-

individual variation (in the random intercepts) while WIC was given by the residual 

variation at the individual level. TNW was obtained by summing WIC and BIC estimates 

obtained from the model. The program IndSpec (Bolnick et al. 2002) was also used to 

obtain estimates of population-level BIC, WIC, and TNW.  

 The BIC, WIC and TNW metrics provide only population-level indications of diet 

variation among individuals. Therefore, to obtain an estimate of IS for each Greenland 

shark, the variance of 22:5n-3 was calculated among the three tissues for each individual 

Greenland shark was calculated and labelled 'WICind.' Using the population-level TNW 

derived from the linear mixed-effects model, the ratio of WICind/TNW was calculated as 
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a metric of IS for each individual shark. Kruskal Wallis followed by pair-wise 

comparisons were used to compare WICind/TNW among sampling dates, Pearson's 

product moment correlation to explore the relationship between WICind/TNW and 

Greenland shark length and Welch's t test to identify any effect of sex. One individual 

shark from April 2008 had a very high WICind /TNW (i.e. 6.86) attributed to a very high 

three-tissue variance (i.e. 11.53, Table S5.1) and was excluded from the aforementioned 

comparisons. All analyses, except for those performed using the IndSpec program 

(Bolnick et al. 2002), were performed in R (R_Development_Core_Team 2010).  

RESULTS 

Proportions of 22:5n-3 were generally similar among the three shark tissues when 

considered across all sampling dates (mean±SD: muscle=2.4±0.8, liver=2.4±1.3, 

plasma=3.4±1.3). However among sampling dates, mean proportions of 22:5n-3 in 

muscle, liver and plasma were higher in April and August 2009 vs April and August 

2008, although these differences were not always significant (Table 5.2). Greenland 

halibut muscle had less variable proportions of 22:5n-3 than ringed seal blubber, but 

proportions of 22:5n-3 did not differ between sampling dates in either species (Table 5.2). 

Relative to prey, 2008 sharks had tissue proportions of 22:5n-3 that were closer to 

Greenland halibut muscle, whereas tissues of 2009 sharks were more similar to ringed 

seal blubber (Table 5.2, Fig. 5.1). Regardless of season, however, all shark tissue values 

fell within the extreme values exhibited by halibut and ringed seal (Fig. 5.1). 

 Individual specialization metrics calculated using the linear mixed-effects model 

agreed with results from IndSpec, revealing that the WIC of the Greenland sharks was 

43% and 36% of the TNW based on IndSpec and the glm, respectively (Table 5.3). 
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Relative to bull (Carcharhinus leucas) and tiger sharks (Galeocerdo cuvier), the extent of 

IS was lower for Greenland sharks (i.e. WIC/TNW was higher, Table 5.3).  

 The mean of WICind/TNW among all 44 Greenland sharks was 0.39 (when the 

one shark with very high WICind/TNW was removed, see Data Analysis section and 

Table 5.3), which agrees with the population-level WIC/TNW obtained from the glm and 

IndSpec methods (i.e. 0.36 and 0.43, respectively, Table 5.3), indicating that this is an 

appropriate metric to explore IS in each Greenland shark. The standard deviation of 

WICind/TNW was high (i.e. 0.33) and indicates variability in the extent of IS among 

individuals. Visual inspection of the data reveals that 22:5n-3 proportions were less 

variable among shark tissues sampled during April and August 2008 (with the exception 

of one individual with a very large 22:5n-3 range from April 2008) than in April and 

August 2009 (Fig. 5.1). In fact, IS was lower in April and August 2009 based on higher 

mean WICind/TNW (2008: April=0.17±0.17, August=0.31±0.22; 2009: April=0.38±0.26, 

August=0.83±0.41), although only the differences between August 2009 and both Aprils 

were significant (Fig. 5.2). Values of WICind/TNW were not correlated with shark length 

and did not differ between sexes (both P>0.05). 

DISCUSSION 

Greenland sharks from Cumberland Sound exhibited an intermediate level of IS based 

on WIC/TNW= ~0.4 (Bolnick et al. 2003). Compared to a recent review of 78 studies 

published since 2003 (performed on plants, gastropods, crustaceans, insects, fishes, 

amphibians, reptiles, birds and mammals; (mean WIC/TNW=0.66, Araújo et al. 2011), 

these Greenland sharks exhibited greater than average IS (i.e. lower WIC/TNW) when 

considered across taxa. However comparisons among WIC/TNW from different 
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populations must be made with care due, for example, to differences in prey fatty acid 

variability (Araújo et al. 2011). It is likely more appropriate to compare values of 

WIC/TNW among shark species, because sharks have a much larger potential TNW than 

other taxa (e.g. due to their high mobility, variable diet and exploitation of sporadic 

scavenging events). The level of IS in the present study was lower than the only other 

study to investigate IS in sharks, which found that bull and tiger sharks feed as individual 

specialists (WIC/TNW=0.05, Table 5.3) and individual generalists (WIC/TNW=0.33, 

Table 5.3), respectively (Matich et al. 2011). Based on the agreement between 

WIC/TNW in Greenland sharks and tiger sharks (Matich et al. 2011), it appears that the 

population of Greenland sharks sampled in the present study predominantly fed as 

individual generalists, which is consistent with Greenland sharks commonly containing 

multiple prey in a given stomach (Leclerc et al. 2012), and having a propensity for 

scavenging (Leclerc et al. 2011; MacNeil et al. 2012). 

  Although WIC/TNW metric is useful for gauging the extent of IS in a given 

population, it also masked considerable variation in the level of IS among individual 

Greenland sharks. Based on the individual-level metric WICind/TNW, this generalist 

population included multiple individuals feeding as specialists (i.e. sharks with values of 

WICind/TNW approaching zero, Table S5.1). These sharks appeared to feed on a subset of 

the populations' total resources at least long enough to be reflected in their muscle, liver 

and plasma (i.e. likely for many months or longer), lending support to the prediction that 

IS could be high in Greenland sharks. Thus, IS can arise even within generalist 

populations inhabiting temporally variable and seasonal environments, and a population 

can be composed of both individual specialists and individual generalists.  
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 Because populations exhibiting temporally stable IS will be more susceptible to 

density-dependent population fluctuations (Bolnick et al. 2003), the temporal constancy 

of IS was explored in the present study. The comparison of WICind/TNW among 

sampling dates revealed that IS in Greenland sharks did not remain constant through 

time, similar to previous observations in mammal consumers (Herrera et al. 2008). Based 

on this result, even if IS arises in Greenland sharks, it is not a permanent feature of the 

Greenland sharks' feeding ecology. Using the terminology of Bolnick et al. (2003), 

Greenland sharks are individual generalists that occasionally act as 'short-term 

specialists'. Such a flexible feeding behaviour should allow Greenland sharks to rapidly 

respond to changes in prey availability or environmental disturbance (Bolnick et al. 

2003).  

 Higher 22:5n-3 (i.e. more similar to seal proportions) but lower IS (i.e. higher 

WICind/TNW) in the 2009 sharks suggests that these sharks were including a larger 

portion of seal in their diets but were not specializing on seal. This was reflected in their 

stomach contents, where seal was found only in conjunction with fish remains (B.C. 

McMeans, unpubl. data). However, 22:5n-3 was lower (more similar to Greenland 

halibut) in 2008 and IS was higher (i.e. lower WICind/TNW, Fig. 5.2), suggesting the 

2008 sharks were exploiting different subsets of the populations' resources, perhaps by 

exploiting different relative amounts of Greenland halibut (i.e. sharks with consistently 

low 22:5n-3) and Greenland halibut and seal (i.e. sharks with more intermediate 22:5n-3, 

Fig. 5.2). The fact that IS varied between sampling years supports the prediction that the 

extent of IS in Greenland sharks would vary with time. Considered within a given year, 

but not across both years, the mean WICind/TNW was higher in the summer vs winter (i.e. 
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IS was lower in the summer vs winter of a given year), which deviates from the 

expectation of higher IS in summer than winter.  

 Although the separation of April and August sampling dates of a given year by 

only 4 months was likely insufficient time for muscle or liver to capture a seasonal diet 

change, blood plasma should have captured a consistent diet change if one existed. 

Differences in mean 22:5n-3 proportions in all three shark tissues between August 2008 

and April 2009 (Table 5.3), however, indicate that 8 months was sufficient time to allow 

for fatty acid turnover to reflect a new diet. Additional feeding studies focused on sharks 

will help better pinpoint the specific turnover time of fatty acids, and allow more specific 

identification of the timing of past feeding behaviour. The range of 22:5n-3 reported here 

for ringed seals (i.e. 5.0-7.8%) captures the variability that would be encountered by 

Greenland sharks feeding throughout the Canadian Arctic (previously reported to be ~5.5 

to 7.0%, Thiemann et al. 2007). As such, the annual differences between 2008 and 2009 

sharks most likely arose from dietary differences and not from, for example, sharks 

feeding in a different location outside of Cumberland Sound prior to capture.  

 The individual-level feeding behaviour identified in the present study has several 

implications from the perspective of food webs. First, the flexible feeding behaviour of 

the Greenland shark supports the hypothesis that species should feed as generalists in low 

diversity systems like the Arctic (MacArthur 1955), and that omnivory is a common and 

important mechanism acting in food webs (Polis and Strong 1996). Second, Greenland 

sharks are known to scavenge (Leclerc et al. 2011; MacNeil et al. 2012), and among the 

sharks sampled in Cumberland Sound, 37% (22 of 59) exhibited evidence of scavenging 

(i.e. the presence of scavenging invertebrates like Onisimus in shark stomachs). 
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Scavenging has often been overlooked regarding its role in food webs until recently 

(Wilson and Wolkovich 2011). Instead of being a 'dead end', consumption of high quality 

carrion by consumers is likely very important for the flow of energy through food webs 

by, for example, increasing the number of trophic links and making food webs more 

reticulate (Wilson and Wolkovich 2011). Further, by feeding on both live and dead prey, 

Greenland sharks are effectively acting as resource couplers of fast and slow resource 

compartments, which can increase the flexibility of food webs in response to 

perturbations and promote persistence (Rooney et al. 2006).  

 Although it is unknown what mechanism was driving changes in the extent of IS 

with time, drastic differences in prey availability are an unlikely explanation because 

Greenland halibut and ringed seals were present in Cumberland Sound throughout the 

study period (B.C. McMeans, personal observation). However, local variability in prey 

abundance may have played a role as catch per unit effort of Greenland halibut in 

Cumberland Sound are known to exhibit inter-annual variability (Dennard et al. 2010). 

Future work is tasked with identifying whether IS arises in other arctic marine species, 

and with linking both the extent and temporal constancy of IS exhibited among species in 

a given ecosystem (Matich et al. 2011) and within populations (this study, Rosenblatt and 

Heithaus 2011) with their importance for food web structure and persistence. The flexible 

feeding behaviour of Greenland sharks identified in the present study could be an 

important mechanism for the structure, and even the persistence, of arctic food webs. As 

the physical environment and biological community structure of arctic ecosystems 

continues to change (MacNeil et al. 2010), such flexibility may become increasingly 

important for arctic animals.  
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Table 5.1. Metrics used to estimate individual specialization in Cumberland Sound 

Greenland sharks.  

Metric  Level Method of estimation 

BIC between-individual variation population glm and IndSpec* 
WIC within-individual variation population glm and IndSpec 
TNW total niche variation population glm and IndSpec 

WIC/TNW 
individual specialization,  

specialist 0        1 generalist 
population glm and IndSpec 

 
  

 
WICind individual-level variance individual 

3 tissue variance for 
each individual 

WICind/TNW 
individual specialization,   
specialist 0        1 generalist 

individual glm / 3 tissue variance 

 glm: linear mixed-effects model performed on proportions of 22:5n-3 (dependent variable), including 
tissue (muscle, liver, plasma) as a fixed effect and individual as a random effect; *Bolnick et al. 2002 
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Table 5.2. Proportions of 22:5n-3 (mean ± SD) in tissues of Greenland sharks (S. 

microcephalus) and two dominant prey. Significant differences in Greenland shark 

muscle, liver and plasma between sampling dates, based on ANOVA, are indicated by 

different letters (similar values share the same letter). The overall mean (i.e. among 

sampling dates) for halibut and ringed seal is presented in Fig. 5.1. 

Muscle ANOVA: F3,40=15.83, P<0.001, Liver ANOVA: F3,38=7.70, P<0.001, Plasma ANOVA: P>0.05, 
Greenland halibut Welch's t test: P>0.05; Ringed seal Welch's t test: P>0.05 

  

Species Date n Tissue 

Somniosus microcephalus 
(Greenland shark) 

  
Muscle Liver Plasma 

April 2008 12 1.7 ± 0.5a 1.6 ± 0.7a 2.7 ± 1.7a 

 
August 2008 8 1.8 ± 0.3a 1.9 ± 0.7ab 2.7 ± 0.7a 

 
April 2009 17 3.1 ± 0.7b 2.7 ± 1.2 ab 3.9 ± 1.2a 

 
August 2009 7 2.6 ± 0.7ab 4.3 ± 1.4b 4.4 ± 0.8a 

      
R. hippoglossoides 

(Greenland halibut) 
  

Muscle 
  

April 2008 11 0.7 ± 0.4a 

  
 

April 2009 33 1.0 ± 0.3a 
  

      
Pusa hispida 

(ringed seal) 
  

Blubber 
  

April 2008 3 6.9 ± 0.9a 
  

 
August 2008 6 5.8 ± 1.1a 

  



140 

Table 5.3. Individual specialization metrics for Greenland sharks (Somniosus 

microcephalus) sampled in Cumberland Sound, calculated from 22:5n-3 proportions of 

shark muscle, liver and plasma. Previously published values for bull (Carcharhinus 

leucas) and tiger sharks (Galeocerdo cuvier) are shown. The values of WICind/TNW is 

the mean ± SD calculated for all 44 individual Greenland sharks (excluding one outlier 

from April 2008).   

Level Metric Greenland shark Tiger shark* Bull shark* 

Population 
 

IndSpec glm IndSpec IndSpec 
 BIC 1.05 0.95 0.04 0.04 
 WIC 0.59 0.73 0.02 0.002 
 TNW 1.68 1.64 0.06 0.04 
 WIC/TNW  

   (   =    ind. spec.) 0.43 0.36 0.33 0.05 

Individual 
WICind/TNW NA 0.39 ± 0.33 NA NA 

*Data from Matich et al. 2010, metrics derived from δ13C values of three tissues (muscle, blood, plasma for 
bull sharks and fin, blood, plasma for tiger sharks) 
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Fig. 5.1. Proportions of 22:5n3 (% of total) in 44 individual Greenland sharks sampled in 

Cumberland Sound during two summers (August) and two winters (April). Each 

horizontal line corresponds to one individual shark and is the range of 22:5n-3 among 

muscle, liver and plasma. Mean (dashed vertical line) ± 1 SD of ringed seal and 

Greenland halibut 22:5n-3 (from across all sampling dates, see Table 5.2) are also shown. 
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Fig. 5.2. Boxplots of WICind/TNW calculated for individual Greenland sharks sampled in 

Cumberland Sound during two summers (August) and two winters (April). Lower values 

indicate greater individual specialization. Letters indicate significant differences 

(Kruskal-Wallis, χ2=15.61, df=3, P<0.05) and similar values share the same letter. 
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SUPPLEMENTARY MATERIAL 

 

Table S5.1. Proportions of plasma (BP), liver (L) and muscle (M) 22:5n-3, sampling 

season and year, length (cm) and sex for 44 individual Greenland sharks. The within-

individual variance (WICind) is the variance of the three tissues, TNW is the populations' 

total variance estimated from a linear mixed effects model (Table 5.2) and the individual 

specialization metric for each shark is WICind/TNW. 

Individual Season Sex Length BP L M WIC ind WICind/TNW 

1 April 08 M 269 1.6 0.8 1.3 0.17 0.10 
2 April 08 F 345 2.1 2.1 2.1 0.00 0.00 
3 April 08 M 250 1.7 0.8 1.6 0.24 0.14 
4 April 08 M 277 2.0 1.7 1.6 0.04 0.03 
5 April 08 F 259 1.2 1.1 1.5 0.06 0.04 
6 April 08 M 262 2.6 2.2 1.3 0.43 0.25 
7 April 08 M 258 2.8 1.0 1.1 0.97 0.58 
8 April 08 M 224 3.1 1.9 2.5 0.36 0.21 
9 April 08 M 248 7.4 1.2 1.8 11.53 6.86* 
10 April 08 M 280 1.3 0.8 1.2 0.07 0.04 
11 April 08 F 291 3.4 2.6 2.2 0.40 0.24 
12 April 08 M 293 3.7 2.7 2.4 0.49 0.29 
13 August 08 M 277 3.4 1.8 1.5 1.00 0.60 
14 August 08 F 320 1.8 3.0 2.2 0.36 0.21 
15 August 08 M 270 1.9 2.2 2.0 0.04 0.02 
16 August 08 F 295 3.1 1.5 1.4 0.93 0.56 
17 August 08 F 255 2.3 1.1 1.4 0.34 0.20 
18 August 08 M 320 3.8 2.7 1.9 0.90 0.54 
19 August 08 F 252 2.4 1.3 1.9 0.34 0.20 
20 August 08 M 305 2.6 1.8 1.8 0.22 0.13 
21 April 09 F 249 3.9 2.9 2.2 0.75 0.45 
22 April 09 F 210 3.2 1.7 2.8 0.58 0.35 
23 April 09 M 291 2.8 1.6 2.5 0.38 0.23 
24 April 09 M 213 5.1 4.5 3.1 1.03 0.61 
25 April 09 F 294 3.8 2.6 2.8 0.43 0.25 
26 April 09 F 270 5.1 4.5 4.2 0.21 0.13 
27 April 09 M 275 3.6 2.1 3.4 0.64 0.38 
28 April 09 M 255 2.4 1.8 2.7 0.21 0.13 
29 April 09 M 283 7.0 5.4 4.3 1.79 1.07 
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30 April 09 M 273 4.1 2.0 3.7 1.28 0.76 
31 April 09 M 278 4.3 3.8 3.9 0.06 0.03 
32 April 09 M 254 4.4 2.9 3.8 0.55 0.33 
33 April 09 M 274 3.3 1.9 2.1 0.52 0.31 
34 April 09 M 264 2.4 0.9 2.3 0.67 0.40 
35 April 09 F 343 4.1 2.8 3.2 0.40 0.24 
36 April 09 M 255 2.6 1.5 2.7 0.40 0.24 
37 April 09 M 244 4.5 3.4 2.5 0.96 0.57 
38 August 09 M 288 3.9 4.4 2.5 0.98 0.58 
39 August 09 M 285 5.0 5.9 3.6 1.26 0.75 
40 August 09 F 285 4.4 NA 2.3 2.30 1.37 
41 August 09 F 322 3.8 3.8 2.3 0.73 0.43 
42 August 09 M 290 3.5 2.1 2.1 0.68 0.41 
43 August 09 M 307 6.0 5.1 3.6 1.45 0.86 
44 August 09 F 270 4.0 NA 1.8 2.33 1.39 
*treated as an outlier and excluded from statistical analyses 
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CHAPTER 6 

TEMPORAL RESOURCE ASYNCHRONY AND SEASONAL DIET SWITCHING IN 

ARCTIC FOOD WEBS: COMPARISONS BETWEEN EMPIRICAL PATTERS AND 

THEORETICAL PREDICTIONS 
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INTRODUCTION 

 Linking food web structures with mechanisms that promote food web persistence 

(i.e. the continued existence of a food web through time) has been an elusive but 

important goal of ecologists for decades (MacArthur 1955; May 1973; Yodzis 1981). 

There has long been a suspicion among ecologists that spatial resource subsidies and 

flexible consumer feeding behaviour are important for food web complexity (Elton 1927; 

Polis 1991), and the ability of food webs to adapt in the face of perturbations (Levin 

1998). Recent theoretical  models have largely confirmed that persistence is greatly 

increased when food webs are structured such that resources vary asynchronously in 

space (i.e. exhibit different relative abundances), which are 'coupled' by generalist 

predators (i.e. when consumers move throughout the landscape consuming abundant 

resources) (Rooney et al. 2006). The coupling of spatially asynchronous resources 

imparts persistence to food webs because: 1) the resource asynchrony provides a steady 

source of food to consumers, 2) resources and consumers within the fast energy channel 

rapidly recover from perturbations, and 3) because consumers 'decouple' from (i.e. stop 

consuming) declining resources, thereby allowing scarce resources to recover (Rooney et 

al. 2006; McCann and Rooney 2009). Consumers are also known to couple resources as 

they vary in time. For example, frugivorous birds switch their diets to exploit seasonally 

varying abundances of insects and fruit, which is thought to promote species coexistence 

and diversity (Carnicer et al. 2008). However, very few data have been collected to 

categorize temporal changes in trophic interactions at the scale of an entire food web (e.g. 

Johnson et al. 2009). It therefore remains unknown if the coupling of temporally 

asynchronous resources is a common structure in food webs. 
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 Temporal variability in resources is more the 'norm' than the exception in 

terrestrial and aquatic environments, and could affect food webs in a number of ways. For 

example, drawing on Noy-Meir's (1973, 1974) pulse-reserve hypothesis, Polis et al. 

(1996) contended that the copious amounts of detritus produced during productive 

periods, and converted into detritivore biomass, can act as an alternative resource for 

consumers during non-productive periods. The ability of consumers to switch between 

feeding on abundant phytoplankton-based resources during productive periods to feeding 

on detritus-consuming prey during non productive periods (i.e. coupling temporally 

asynchronous resources, Fig. 1.3) is synonymous with the movement of consumers in 

space to exploit abundant and abandon declining resources (Eveleigh et al. 2007). The 

coupling of temporal resource asynchrony could therefore promote persistence in a 

similar manner to that previously described for spatial coupling (Rooney et al. 2006). If 

temporal mechanisms are important for food web structure and persistence, two patterns 

are expected (McCann et al. 2005): 1) multiple resources that vary asynchronously 

through time should exist (i.e. as the abundance of one resource declines, another 

resource increases) and 2) consumers should act as temporal couplers of this resource 

variability by exploiting abundant (i.e. temporal coupling) and abandoning scarce 

resources (i.e. temporal decoupling). The arctic is one of the most temporally variable 

marine environments on earth (Weslawski et al. 1991) and should therefore be a fruitful 

location to investigate the effects of temporal resource variability on food web structure, 

and to determine whether empirical food web structures are consistent with theoretical 

predictions. 
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 What is known about the seasonal changes of arctic marine ecosystems and the 

effect of seasonality on arctic food webs? Generally, open-water diatom blooms in the 

summer months fuel pelagic food chains (Falk-Petersen et al. 2000; Falk-Petersen et al. 

2007) and settle to the sea floor to support a diverse benthos (Forest et al. 2008; Renaud 

et al. 2011). The phytoplankton bloom eventually becomes nutrient and light limited as 

ice forms, winter progresses, and very little pelagic algae are present during the dark, ice-

covered period (Carey 1992). When light returns in early spring, under-ice algae provide 

early nutrition to pelagic and benthic consumers (Carey 1992), which is followed by the 

phytoplankton bloom, completing the annual cycle. Periods of > 9 months can separate 

times of phytoplankton production in arctic seas (Weslawski et al. 1991) and as a result, 

arctic consumers are broadly considered to feed as opportunists all year (Lovvorn et al. 

2005; Renaud et al. 2011), or to cease feeding entirely during winter and enter diapause 

(i.e. some calanoid copeods, Falk-Petersen et al. 2009). Opportunistic feeding behaviour 

has been invoked to explain the lack of seasonal changes in the diets of arctic biota 

(Werner and Auel 2005; Renaud et al. 2011; Legezynska et al. 2012), which is consistent 

with an 'unstructured' food web (Isaacs 1973). However, arctic ecosystems are known to 

experience seasonal changes in primary production (Carmack and Wassmann 2006), 

lower biomass and diversity in winter (Weslawski et al. 1991), and a switch from 

phytoplankton to detritus fueling the summer and winter food webs, respectively (Forest 

et al. 2008). Further, some consumers, like ringed seals (Pusa hispida), are known to 

switch their diet with season, exploiting higher trophic position prey in the winter (Lowry 

et al. 1980; Weslawski et al. 1994). Unfortunately, much empirical work in the arctic to 

date has been highly regional (Carmack and Wassmann 2006) and no attempt has been 
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made to broadly unite empirical observations from the arctic with patterns predicted by 

recent food web theory. Further, most studies that report winter feeding behaviour focus 

on one species (e.g. Pusa hispida, Weslawski et al. 1994), functional group (e.g. 

sympagic amphipods, Werner and Auel 2005) or only a portion of the food web (e.g. 

benthic food web, Renaud et al. 2011). It therefore remains unclear which view of arctic 

food webs, as structured or unstructured, is correct.  

 The goal of the present study was to determine whether temporal coupling of 

asynchronous resources is an apparent structure within arctic food webs when sampled 

between summer and winter. Specifically, the following questions were asked: 1) do 

resources in arctic food webs vary asynchronously through time?, and, 2) do arctic 

consumers switch their diet away from declining and towards abundant resources as they 

vary through time (i.e. 'couple' resources in time)? To answer these questions, previously 

published data were compiled from arctic seas to assess: 1) seasonal variability in basal 

resources (i.e. phytoplankton, detritus and macroalgae) and in the biomass of 

zooplankton, benthos and fishes (to establish whether resources and prey availability 

varied asynchronously) and 2) seasonal diet switching by consumers (to establish whether 

consumers altered their diet in response to temporal resource asynchrony if observed). To 

further explore seasonal changes in food web structure, data collected in Cumberland 

Sound, Baffin Island, Canada during summer and winter periods are presented. Primary 

production was expected to only occur during summer and the biomass of zooplankton 

was predicted to decline in winter (Weslawski et al. 1991). If resources are observed to 

vary asynchronously, for example, if the biomass of some resources decline in winter and 

availability of other resources increase in winter, and consumers alter their feeding 
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behaviour in time to exploit abundant resources and decouple from declining resources, 

then the observed pattern would agree with that predicted by theory (McCann et al. 2005) 

(i.e. Fig. 1.3, Ho). One alternative possibility is no apparent temporal pattern in the 

overall structure of the food web (Fig. 1.3, Ha). 

MATERIALS AND METHODS 

Literature review 

 The literature review was restricted to studies that reported data from an arctic 

food web (categorized as defined by Carmack and Wassmann 2006) during both summer 

and winter (i.e. data were not compiled from studies that only reported winter or summer 

data only) and to studies focused on marginal ice sea areas that experience periods of 

both open water and ice cover (e.g. not on pack ice food webs). Data were compiled for 

summer and winter only (although other seasons obviously occur in the arctic), because 

summer and winter are the times of maximum and minimum phytoplankton production 

and arguably represent the most disparate conditions experienced by most arctic 

organisms. The timing of summer and winter differ among arctic locations, but most 

arctic studies define these seasons in a similar manner (e.g. Weslawski et al. 1991; 

Carmack and Wassmann 2006). Arctic summer is the time of predominantly open water, 

no or little ice cover and high solar radiation, salinity stratification and high 

phytoplankton productivity. Winter is defined as the time of 100% ice cover, and low 

water column stratification, solar radiation and primary productivity. The review of 

biomass and consumer diet changes was attempted to be exhaustive. The review of 

changes in basal resources was not exhaustive because it quickly became clear that 
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phytoplankton peaked in the spring or summer and was at a minimum in the winter, 

which is a known characteristic of arctic seas (Carmack and Wassmann 2006).  

Cumberland Sound sampling 

 Several lower and upper trophic level species, as well as primary producers, were 

sampled for stable isotope and fatty acid analysis (see Chapter 2 for a description of 

Cumberland Sound and Fig. 2.1. for a map of sampling locations) during summer 

(August) and winter (April) of 2007-2010 (see Table 6.1 for species sampled and putative 

diet information, and Tables S6.1 and S6.2 for sampling dates).  Zooplankton were 

captured using a 243-µm plankton net (Wildlife Supply Company®, Buffalo, New York) 

by performing horizontal and vertical tows (from near bottom to surface) in open water 

(summer) and vertical hauls through holes cut in the ice during winter. Benthos were 

sampled using a dredge, Ponar or dip nets in summer. One exception was scavenging 

amphipods (Onisimus spp.), which were caught using bottom traps baited with seal 

blubber (wrapped in mesh to prevent consumption). Sculpin (Myoxocephalus scorpius) 

were captured using baited fishing line and elasmobranchs (arctic skate: Amblyraja 

hyperborea, Greenland shark: Somniosus microcephalus) using bottom long lines (set 

from a boat during summer and through ice holes in winter). Ringed seals were collected 

during Inuit subsistence hunts. Samples collected for stable isotopes and fatty acids (see 

Table S6.1 and S6.2 for tissues sampled, respectively) were immediately frozen at -20°C 

and -80°C.  

 In an attempt to capture a seasonal diet switch if one existed in upper trophic 

levels, tissues thought to have fast turnover times were sampled (MacNeil et al. 2005; 

MacNeil et al. 2006; Kӓkelӓ et al. 2009). Specifically, plasma was sampled from 
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Greenland sharks and liver from arctic skate (for both stable isotopes and fatty acids). 

Liver and blubber of ringed seals were analyzed for stable isotopes and fatty acids, 

respectively. It is important to note, however, that the sampling of different tissues limits 

the ability to compare stable isotope values among these species due to differences in 

tissue-specific diet-tissue discrimination values (Caut et al. 2009; Hussey et al. 2012). 

However this will not affect the purpose of this study, as the goal was not to compare 

between species but between seasons, within species. Samples were analyzed for stable 

isotopes as described in McMeans et al. (2009) and for fatty acids as described in Chapter 

2 and McMeans et al. (2012). 

Analysis of Cumberland Sound data 

 Two-way ANOVAs (factors=functional group*season) were used to determine 

the effect of season on δ13C and δ15N after accounting for differences among functional 

groups and ensuring normality (q-q plots) and homoscedacity (Levene's test).  When n ≥ 

3, Welch's t tests (two groups) or ANOVA (≥3 groups) were used to compare δ13C and 

δ15N values of individual species between sampling dates. Non-metric multidimensional 

scaling (dimensions = 2, distance measure = Euclidean) was used to explore differences 

in fatty acids among: 1) primary producers, zooplankton and benthos and 2) fish and 

marine mammal consumers. Data were generated for 50 fatty acids, but analyses were 

performed on 5 fatty acids known to be informative regarding resource use and diet 

(Table 6.2). All analyses were performed in R (R Development Core Team 2010) and the 

significance level was set at 0.05.  

Trophic positions and carbon sources of Cumberland Sound species  
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 Stable isotopes are useful for calculating relative trophic positions and for tracing 

the use of isotopically distinct carbon sources through arctic food webs (Dunton and 

Schell 1987; Søreide et al. 2006; Tamelander et al. 2006). To do so, however, requires 

first correcting upper trophic level isotope values by both diet-tissue discrimination (i.e. 

∆13C and ∆15N) and for temporal variability in stable isotopes at the base of the food web 

(Vander Zanden and Rasmussen 1999; Vander Zanden and Rasmussen 2001; Post 2002). 

Specifically in arctic seas, POM and macroalgae are known to change their isotopic 

signature by becoming more enriched and depleted, respectively, in winter compared to 

summer due to increased bacterial degradation in winter (Fig. S6.1). To overcome these 

issues, a one-source and a two-source model, respectively, were used to calculate relative 

trophic positions (TP) and relative reliance on pelagic carbon (α). Relative TPs were 

calculated for summer- and winter-sampled individuals using the mean δ15N of the filter-

feeding clam (Mya eideri, TPbaseline=2) from summer and winter, respectively (Table 

S6.1), as the baseline and 3.4‰ as the ∆15N in the following equation:  
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To identify changes in horizontal food web structure, values of α were calculated using a 

modified two-source mixing equation (Post 2002; Vander Zanden and Vadeboncoeur 

2002) that incorporates enrichment of consumer 13C at each trophic step (i.e. ∆13C) above 

the primary consumer baselines as follows: 
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∆13C was set at 0.8‰ (Dunton and Schell 1987; Fredriksen 2003), TPconsumer is the result 

of the one source TP model for each individual (Eqn. 1) and 2 is the TP of the baselines. 

The filter-feeding clam and deposit-feeding polychaete (Cistenides granulata) were used 

as the two baselines for phytoplankton and benthic carbon, respectively. Thus, relative 

values of α represent % reliance on pelagic vs. benthic carbon. These species are 

appropriate baselines because they likely feed all year on available carbon and should 

therefore reflect changes in the isotopic signature of carbon between summer and winter, 

unlike other previously used baselines like Calanus (Hobson et al. 2002) that do not feed 

in the winter (Søreide et al. 2008). 

RESULTS 

Temporal resource variability 

 As expected, total particulate organic carbon (POC) flux was consistently higher 

in summer versus winter in all 6 arctic regions (Table S6.3). The seasonal variability 

observed for total POC was mirrored by trends in specific types of POC: phytoplankton, 

detritus and fecal pellets (Fig. 6.1). Total POC in summer was predominantly represented 

by fresh phytoplankton and zooplankton fecal pellets, whereas detritus dominated total 

POC in winter (Fig. 6.1). Fecal pellet flux tended to be higher in summer than winter 

(Table S6.3), but based on results presented by Forest et al. (2008), the proportion of 

degraded fecal pellets increased in winter (Fig. 6.1), indicating increased reliance on 

coprophagy. Macroalgae detritus is also thought to contribute substantially to the detrital 

pool and to act as an important resource to consumers during winter (Table S6.3, Dunton 

and Schell 1987). 

Temporal changes in biomass 
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 Herbivorous zooplankton declined in biomass from summer to winter, whereas a 

larger proportion of omnivorous and carnivorous zooplankton had higher abundance or 

biomass in the winter (vs herbivores, Fig. 6.2). For example, smaller copepods like 

omnivorous Microcalanus pygmaeus and Pseudocalanus sp., as well as copepod 

naupulii, were reported in higher numbers in winter than summer (Table S6.4). However, 

changes in zooplankton abundance and biomass are intricately linked to water currents 

(Søreide et al. 2003; Hop et al. 2006) and life history (e.g. the 'ontogenetic escalator' 

described by Conover 1988), such that declining biomass does not necessarily only 

represent mortality. 

 Abundance or biomass of deposit/filter feeding (DF/ FF) benthos also varied with 

seasonal changes in primary production because these species often, but not always, 

declined in abundance or biomass during the winter (Fig. 6.2). Upper trophic level 

benthos, which included omnivorous, carnivorous, scavenging (O/C/S) amphipods, on 

the other hand, commonly maintained biomass between seasons, but were also reported 

to increase or decrease during winter (Fig. 6.2, Table S6.4). The biomass of transient 

species like arctic char (Salvelinus alpinus) and capelin (Mallosus villosus) obviously 

declined in winter (Table S6.4). No data could be located regarding if and how resident 

species, like ringed seals, change in biomass or abundance between summer and winter. 

Resident arctic consumers like ringed seals produce and rear young in late winter 

(Lydersen and Gjertz 1986; Ferguson et al. 2005), so a decline in biomass would not be 

expected. 

Seasonal diet switching by consumers 
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 Compiled data from the literature indicated that diet switching between summer 

and winter in arctic consumers is variable within and between functional groups (Fig. 6.3, 

Table S6.5). Herbivorous zooplankton exhibited the most consistent response by 

switching from a phytoplankton diet in summer to relying on internal reserves in winter 

(Fig. 6.3). This is a well known mechanism of the genus Calanus (e.g. Falk-Petersen et 

al. 2009) which survive the winter by decreasing their respiration rate (Fig. 6.4) and 

relying on stored lipids. DF/FF benthos generally exhibited no change in diet with 

season, although reports of reliance on internal reserves or increased contribution of 

benthic or macroalgae carbon were found (Fig. 6.3, Table S6.5). 

 A greater range of diet changes between summer and winter was exhibited by 

omnivores and carnivores (Fig. 6.3). Not changing diet with season was commonly 

reported (i.e. ≥50%) in carnivorous zooplankton, O/C/S benthos and in fish, marine 

mammal and seabird consumers (Fig. 6.3). The observation that not all arctic species 

switch their diet with season is supported by the known response of some consumers, 

including certain amphipods (e.g. Onisimus), to maintain the same respiration rate 

through winter, unlike herbivorous copepods (Fig. 6.4). However, switching to a higher 

trophic position in winter was also reported for consumers and some O/C/S benthos (Fig. 

6.3). 

 Data from Cumberland Sound allowed further exploration of seasonal diet 

switches and changes in overall food web structure (i.e. α vs TP). At the level of 

functional groups, two way ANOVAs revealed that season and the functional 

group*season interaction term was significant for δ15N (Table 6.3). Based on Tukey's 

post hoc comparisons, carnivorous zooplankton, carnivorous benthos and pelagic 
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consumers were the only functional groups to exhibit significantly higher δ15N in winter 

than summer. At the species level, Welch's t tests and ANOVAs revealed that δ15N was 

significantly different between summer and winter for clam (DF/FF benthos), whelk 

(Buccinum cyaneum, O/C/S benthos), sculpin (fish consumer) and ringed seal (marine 

mammal consumer), and that δ13C significantly differed in the wandering anemone 

(unknown species, O/C/S benthos) and sculpin (Table S6.1, Fig. 6.5). Based on 

calculated values of relative TP and α, anemone, jellyfish (Aglantha digitale, O/C 

zooplankton), whelk and ringed seal fed at a higher trophic position, and anemone, whelk 

and sculpin fed on higher amounts of benthic carbon in winter vs summer (Table S6.1). 

Higher POM δ15N in winter vs summer and more similar seasonal values of macroalgae 

δ15N (Fig. S6.1) corresponded to significantly higher δ15N in clam and similar values in 

polychaete between winter and summer (Table S6.1, Fig. 6.5). This result supports the 

contention that clams consume pelagic carbon and polychaetes consume macroalgae 

and/or benthic carbon year round and incorporate the signature of available carbon during 

summer (fresher material) and winter (more degraded material). 

 Fatty acids supported stable isotope results from Cumberland Sound (Table S6.2). 

For example, C. hyperboreus exhibited higher 20:1n-9 and other MUFA (e.g. 18:1n-9) 

and lower PUFA like 20:5n-3 in winter (Table S6.2, Fig. 6.6), which reflects the selective 

retention and catabolism of certain FA during overwintering (Chapter 2, Lee 1974; 

McMeans et al. 2012).  Based on the NMDS of primary producers and zooplankton, FA 

profiles of whelk in winter separated from summer due to higher carnivory markers in the 

former (Fig. S6.2), supporting their higher calculated TP (Table S6.1). Higher ARA 

(Table S6.2) in winter sculpin supported higher α (Table S6.1) in indicating that winter 
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sculpin relied more heavily on benthic carbon (Table 6.4). Combined, stable isotope and 

fatty acid results revealed that 50% of Cumberland Sound species sampled exhibited a 

seasonal diet switch, and that the specific responses of consumer diets between seasons 

were variable within all functional groups except for carnivorous zooplankton (Table 

6.4). 

 Food web structure 

 The overall structure of the Cumberland Sound food web (i.e. α vs TP) differed 

between summer and winter with a shift in structure that was driven by increases in TP 

and decreases in α (i.e. greater reliance on benthic sources in winter) by several species 

(Fig. 6.7). Based on results of the literature review and data from Cumberland Sound, a 

conceptual model of changes in arctic food webs between summer and winter was 

generated, which aims to capture temporal resource asynchrony, biomass changes and 

associated changes in consumer diet (Fig. 6.7) in the context of their importance for food 

web persistence (based on food web theory, McCann 2005). General roles of functional 

groups in arctic food webs were assigned to illustrate the potential function of species 

belonging to a given function group. Assigning one function or behaviour to an entire 

functional group is clearly an oversimplification given that seasonal changes in species' 

biomass (Fig. 6.2) and diet (Fig. 6.3) were variable within functional groups. Illustrated 

linkages among species are also oversimplified because most species would consume 

prey from multiple functional groups and because links to the detrital sediment 'food 

bank' would almost certainly be higher (Mincks et al. 2005). However, this model (Fig. 

6.7) is useful for considering observed patterns in arctic food webs in the context of food 

web theory.  
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DISCUSSION 

Relating empirical patterns with predictions from food web theory 

 Evidence for both temporal resource asynchrony and consumer coupling of 

resources in time were found in the present study. Results presented here therefore 

provide empirical support for the hypothesis that, in a similar manner to spatial coupling 

(Rooney et al. 2006), the coupling of temporally asynchronous resources is important for 

the maintenance of food web complexity (Carnicer et al. 2008) and food web persistence 

(McCann et al. 2005). The existence of multiple, temporally asynchronous resources 

could promote the persistence of food webs by providing consumers with a stable 

resource base during both productive and non productive times (Polis et al. 1996). 

Consumer switching behaviour would allow declining resources to recover, further 

promoting food web persistence (McCann et al. 2005). Combined, the above mechanisms 

would impart a flexible nature to food webs and increase their ability to respond in the 

face of perturbations (Levin 1998).  

 Temporal resource asynchrony existed in arctic seas because phytoplankton 

production and herbivore biomass peaked in the summer, and several species of O/C/S 

zooplankton and amphipods, young stages of herbivorous zooplankton, and benthos 

peaked during winter months. Higher δ15N in filter-feeding clams from Cumberland 

Sound and lower δ13C in the deposit-feeding polychaete in winter indicate that 

phytoplankton and macroalgae were consumed as detritus or more refractory forms in 

winter than summer, supporting previous contentions that arctic food webs are driven by 

detritus in the winter (Forest et al. 2008). Consumers exploited the abundant 

phytoplankton growth or the large numbers of herbivorous zooplankton during the 

summer, and switched to more refractory carbon, higher TPs, or greater amounts of 
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benthic carbon when summer resources became scarce in the winter (Fig. 6.7). This 

coupling-decoupling of different resource compartments is precisely the structure that is 

predicted by food web theory to impart persistence (McCann et al. 2005). To the best of 

my knowledge, this is the first time that the temporal characteristics of arctic marine food 

webs have been discussed in the context of recent food web theory. 

 The persistence-promoting mechanisms that arise from both spatial and temporal 

coupling of asynchronous resources are similar (McCann et al. 2005; Rooney et al. 2006), 

but the mechanisms generating resource asynchrony could differ. Consumer selection of 

specific resources is an important, top-down mechanism that drives resource asynchrony 

in spatial landscapes (Rooney et al. 2006; McCann and Rooney 2009). On the other hand, 

changing levels of sunlight and nutrients (i.e. bottom-up factors) would be the primary 

drivers of temporal resource asynchrony (e.g. timing of tree fruiting, Carnicer et al. 

2008). Interestingly, bottom-up processes are likely important for the generation of both 

spatial and temporal resource asynchrony in arctic or other highly seasonal environments, 

because, even within the productive period, the pulsed nature of primary production is the 

primary driver of differences in availability of resources in both space (Chapter 3) and 

time (this study). In this way, the mechanisms generating spatial and temporal resource 

asynchrony could differ between arctic and temperate or tropical locations.   

 The observation that about 50% of Cumberland Sound species sampled exhibited 

a seasonal diet switch and that this response varied within and between functional groups 

is consistent with the results of data compiled from the literature. For example, both 

amphipods and whelk had higher 20:1n-9 and lower 20:5n-3 in the winter (Fig. 6.6), 

which, based on their known opportunistic and scavenging behaviour (Table 6.1), could 
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indicate increased consumption of detritus (low in PUFAs like 20:5n-3, Søreide et al. 

2008), or increased scavenging of Calanus copepods or consumers of Calanus (i.e. high 

20:1n-9). The slightly higher TP and 20:1n-9 proportions (Fig. 6.6) of winter Cumberland 

Sound ringed seals supports previous reports that this species switches its diet from 

zooplankton and amphipods in the summer to fish like polar cod (Boreogadus saida) in 

the winter (Table 6.4), which are high in 20:1n-9 (Dahl et al. 2000). The varied responses 

of arctic species to environmental variability could be an important mechanism 

promoting species coexistence (Abrams 2006; Carnicer et al. 2008), which is an 

interesting avenue for future research. 

 The Cumberland Sound data additionally revealed how the shape of an arctic food 

web (i.e. TP vs α) can shift between summer and winter. Because the top predator, the 

Greenland shark, did not exhibit a seasonal diet switch, the vertical height of the food 

web (food chain length) did not differ between seasons. However, increased TPs and 

decreased values of α for several consumers did result in a shift in the overall shape of 

the food web (Fig. 6.7). The ubiquity of such shifts in food web structure with time 

remain to be explored, but likely exists in more temperate oceans as well. For example, 

using network analysis, Johnson et al. (2009) found that the Chesapeake Bay food web 

switched from pelagic-dominated in the summer to more detritus and benthic dominated 

in the winter, which agrees with results from the present study (i.e. from Cumberland 

Sound) and in previous arctic studies (Dunton and Schell 1987; Forest et al. 2008).   

Implications for climate change 

 Based on food web theory, the removal of spatial or temporal resource 

asynchrony would leave consumers nothing to respond to, via coupling and decoupling, 
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removing the mechanism thought to promote persistence and resulting in an essentially 

unstructured food web (McCann et al. 2005; Rooney et al. 2008). Global climate change 

is a threat to resource asynchrony in arctic seas because predicted consequences include a 

switch from highly pulsed, intense phytoplankton production driven by diatoms (high 

quality) to more prolonged, less pulsed phytoplankton production driven by smaller 

(lower quality) flagellates (Weslawski et al. 2011). The increased constancy and 

decreased quality of phytoplankton growth (Weslawski et al. 2011) is thought to result in 

community level changes, whereby communities dominated by the larger, more lipid-rich 

C. glacialis and C. hyperboreus are replaced by smaller C. finmarchicus, which would be 

a lower quality food for consumers (Falk-Petersen et al. 2007). Decreases in benthic 

biomass are also a predicted scenario, due to the potential for diminished benthic-pelagic 

coupling (Weslawski et al. 2011). Such changes could decrease temporal asynchrony by 

removing the benthos as an alternative resource for consumers, and replacing the summer 

'bloom' of Calanus production with a more temporally stable, lower quality resource base 

(i.e. C. finmarchicus) for consumers.  

 In conclusion, arctic food webs are structured such that temporally asynchronous 

resources are coupled by consumers, which is consistent with predictions from food web 

theory (McCann et al. 2005; Rooney et al. 2006). Viewing the seasonal changes in arctic 

food webs through the lens of recent food web theory, any action that promotes resource 

synchrony would be detrimental to arctic food webs. Future work is tasked with 

incorporating more subtle differences in species-specific resource use between seasons 

into the more general framework developed here. However, based on the present study's 

results, the coupling of resource compartments, as previously described in space (Rooney 
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et al. 2006), also occurs in time. Therefore, the potential for food webs to be structured on 

a temporal axis is likely an additional structure that promotes their persistence (McCann 

et al. 2005), at least in seasonal environments like the arctic.   
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Table 6.1. Species sampled from Cumberland Sound, Nunavut during summer (August) and winter (April) and putative diet 

information. 

 

 

Functional Group Species Diet Reference 

Zooplankton    
Herbivorous Calanus hyperboreus phytoplankton Søreide et al. 2008 
 Mysis sp. phytoplankton and macroalgae Dunton and Schell 1987 

O/C Aglantha digitale 
copepods, fecal pellets, detritus, 

dinoflagellates, ciliates 
Pages et al. 1996 

 Sagitta sp. copepods Pearre 1973 
Benthos    

DF/FF Cistenides granulata deposit feeder Fauchald and Jumars 1979 
 Mya eideri filter feeder Shumway et al. 19852 
 O/C/S Wandering anemone unknown but likely carnivorous  

  Buccinum cyaneum polychaetes, bivalves, carrion Himmelman and Hamel 1993 

 
Amphipods (likely Onisimus 

sp.) 
algae, zooplankton carrion Werner and Auel 2005 

Consumers    

 Somniosus microcephalus 
P. hispida, R.  hippoglossoides, M. 

scorpius 
McMeans, unpub. data1 

 Amblyraja hyperborea Lebbeus polaris McMeans, unpub. data 

 Myoxocephalus scorpius isopods, Mysis, polychaetes 
McMeans, unpub. data, 
Cardinale 2000 

 Pusa hispida themisto, fish McMeans, unpub. data 
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Table 6.2. Indicator fatty acids used to investigate seasonal diet changes in Cumberland 

Sound biota. 

Fatty acid Diet indication References 

16:1n-7 high in phytoplankton or phytoplankton-consuming prey 1, 2 

18:1n-9 high in carnivores 3, 4, 5 

20:1n-9 high in Calanus copepods and consumers of Calanus  2, 3, 6 

20:4n-6 high in macroalgae or macroalgae-reliant prey 7 

20:5n-3 
high in phytoplankton or phytoplankton-consuming prey, 
low in detritus 

1, 2, 5 

22:6n-3 high in phytoplankton or phytoplankton-consuming prey 1, 2, 5 

1. Graeve et al. 1994, 2. Kattner et al. 1989, 3. Sargent and Falk-Petersen 1981, 4. Sargent and Falk-
Petersen 1988, 5. Søreide et al. 2008, 6. Graeve et al. 2005, 7. Kharlamenko et al. 1995
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Table 6.3. Results of two-way ANOVAs investigating the effects of functional group 

(Table 1) and season (summer vs winter) on δ13C and δ15N of Cumberland Sound species. 

 

 

 

 

 

 

 

 

 
 
 

 
 

δ13C df Sum Sq Mean Sq F value P 

Fun.group 6 215.70 35.95 39.27 < 0.001 
Season 1 1.01 1.01 1.10 0.30 
Fun.group*Season 6 11.49 1.92 2.09 0.06 
Residuals 170 155.61 0.92 

  
      δ15N df Sum Sq Mean Sq F value P 
Fun.group 6 1709.01 284.84 379.80 <0.001 
Season 1 55.13 55.13 73.51 0.00 
Fun.group*Season 6 30.78 5.13 6.84 0.00 
Residuals 170 127.49 0.75 
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Table 6.4. Seasonal changes in diet between summer and winter in Cumberland Sound biota based on stable isotope (SI: δ15N, 

δ13C) and fatty acid (FA) evidence.  

1. B. McMeans, unpublished data; NMDS: non metric multidimensional scaling, used to assess differences in fatty acids among species (Fig. S6.2); TP: 
δ15N-derived relative trophic positions; α: δ13C-derived reliance on pelagic carbon

Fun. Group Species Change How Evidence 

Zooplankton 
 

  
 

Herbivorous Calanus hyperboreus Yes phytoplankton in summer, internal 
reserves in winter 

no consistent seasonal differences in SI, higher phytoplankton 
FA in summer 

 
Mysis sp. Yes consumption of non-phytoplankton 

food in winter 
separation on NMDS due to higher 20:1n9 and lower 20:4n-6 
and 22:6n-3 in winter 

O/C Aglantha digitale No omnivorous/ carnivorous all year similar TP and α between summer and winter 

 
Sagitta sp. No carnivorous all year similar δ13C and  δ15N, TP and  between seasons 

Benthos 
 

  
 

DF/FF Mya eideri Yes 
increased reliance on re-worked 
carbon 

significantly higher  δ15N 

 
Cistenides granulata No 

selectively feeds on similar 
particles year-round 

no significant difference in  δ15N or  δ13C 

O/C/S Wandering anemone Yes increased benthic carbon usage significantly higher  δ13C and higher α in winter 

 
Amphipods (Onisimus 
spp.) 

No generally similar, perhaps more 
scavenging in winter 

no separation on NMDS, although 20:1n-9 was higher in winter 

 
Buccinum cyaneum Yes increased TP 

significantly higher δ15N, higher TP and higher 20:1n-9, 18:1n-9 
and lower ARA, EPA, DHA in winter 

Consumer Somniosus 
microcephalus 

No likely opportunistic all year no consistent differences in SI of FA between summer and 
winter 

 
Amblyraja hyperborea No 

too few summer data to speculate, 
but differences warrant further 
attention 

n=1 in summer but had higher 18:1n9, 20:1n9 and lower 20:5n-
3 in winter vs summer 

 
Myoxocephalus 
scorpius 

Yes increased benthic feeding Significantly higher  δ13C,α, 18:1n-9, 20:1n-9 and higher 
contribution of polychaetes to stomachs in winter1 

 
Pusa hispida Yes increased TP Not always significant, but higher  δ15N  in winter, slightly 

higher TP and higher 20:1n9, EPA, DHA in winter 
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Fig. 6.1. Particulate organic carbon flux (POC, mg C m-2 d-1) from Forest et al. 2008 

sampled in Franklin Bay, Beaufort Sea during summer (light bars) and late winter 

(March, dark bars). Inset shows % of degraded fecal pellet flux. Redrawn from Forest et 

al. 2008.  
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Fig. 6.2. Differences in abundance/ biomass between summer and winter among 

functional groups sampled from various regions throughout the arctic (number of studies 

summarized in parentheses, Table S6.4). Piece representing 'no change' is offset. 
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Fig. 6.3. Changes in diet from summer to winter in arctic animals (number of studies 

summarized in parenthesis, Table S6.5). Piece representing 'no change' is offset. 
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Fig. 6.4. Respiration rates for two copepods and three amphipods sampled during 

summer (light bars) and winter (dark bars) in various arctic regions. 

CH*: Calanus hyperboreus, both samples were collected during summer, data provided for 'winter' were 
inactive samples collected in deep water, Auel et al. 2003; CF: Calanus finmarchicus, Hirche et al. 1983; 
AG: Apherusa glacialis, GW: Gammarus wilkitzkii, On: Onisimus spp., Wener and Auel 2005 
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Fig. 6.5. Mean±SE of stable nitrogen (δ15N) and carbon isotopes (δ13C, both ‰) for 

selected species sampled in Cumberland Sound, Canada during summer (August) and 

winter (April, see Table S6.1 for significant differences and full list of species sampled). 

Summer and winter samples were collected in August 2008 and April 2009, respectively, 

with the exception of anemone (August 2007 and April 2008), ringed seal (April 2008 

and August 2008), DF polychaete and sculpin (both April 2009 and August 2009).  

 
Macroalgae: Fucus distichus., DF polychaete: Cistenides granulata, FF clam: Mya eideri, Jellyfish: 
Aglantha digitale, Predatory snail: Buccinum cyaneum, Anemone: unknown species, Sculpin: 
Myoxocephalus scorpius, Ringed seal: Pusa hispida  
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Fig. 6.6. Mean±SD of 20:1n-9 and 20:5n-3 in select Cumberland Sound species between 

summer (August) and winter (April). Summer and winter samples were collected in 

August 2008 and April 2009, respectively, with the exception of  ringed seal (April 2008 

and August 2008), Mysis and sculpin (both April 2009 and August 2009). 

Cope: Calanus hyperboreus, Mysis: Mysis sp., Amphipod: likely Onisimus sp., Predatory snail: Buccinum 
cyaneum, Sculpin: Myoxocephalus scorpius, Ringed seal: Pusa hispida  
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Fig. 6.7. Cumberland Sound food web structure (% reliance on pelagic carbon (α) vs 

δ15N-derived trophic position) between summer (A) and winter (B) and conceptual model 

of temporal changes in arctic food webs (lower panels). Arrows represent use of 

phytoplankton (green), detritus (brown) or carnivory (black).   
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SUPPLEMENTARY MATERIAL 

Table S6.1. Mean ± SD of δ13C, δ15N, δ13C-derived relative % reliance on pelagic carbon (α), δ15N-derived relative trophic positions (TP) 

and total length of species sampled from Cumberland Sound, Nunavut during summer (August, S) and winter (winter, W) of 2007-2010. 

When samples size was ≥3, species' δ13C and δ15N values were compared between summer and winter via Welch's t test (2 groups) or 

ANOVA (≥3 groups). Results are provided under 'test' columns and similar values share the same letter. Dash (-) indicates not calculated 

or not reported. 

Functional 
Group 

Species name Tissue Date n δ13C (‰) 
δ13C  
test 

δ15N (‰) 
δ15N  
test α TP 

Total length 
(cm) 

Basal 
           

 
POM Whole S  '08 1 -22.1 - 8.2 - - - - 

 
IcePOM Whole W  '08 1 -20.3 - 5.6 - - - - 

 
Macroalgae (Fucus 
distichus) 

Leaf S  '08 3 -14.9 ± 1.2 - 6.4 ± 1.1 - - - - 

   
S  '09 3 -15.1 ± 1.8 - 7.5 ± 1.3 - - - - 

 
Macroalgae detritus Leaf W  '09 3 -16.7 ± 0 - 7.3 ± 0.1 - - - - 

Zooplankton 
           

Herbivorous Calanus hyperboreus Whole S  '07 7 -19.4 ± 0.4 a ☺ 10.4 ± 0.4 a 1.0 ± 0.1 2.6 ± 0.1 - 

   
W  '08 2 -20.8 ± 0 - 10.4 ± 0.1 - 1.3 ± 0 2.3 ± 0 - 

   
S  '08 5 -20.4 ± 0.1 b☺ 9.9 ± 0.5 a 1.2 ± 0 2.4 ± 0.2 - 

   
W  '09 8 -20.7 ± 0.5 b☺ 10.5 ± 0.4 a 1.3 ± 0.1 2.4 ± 0.1 - 

 
Mysis sp. Whole S  '09 5 -20.8 ± 0.1 - 9 ± 0.1 - 1.3 ± 0 2.2 ± 0 - 

Carnivorous Aglantha digitale Whole W  '08 2 -20.2 ± 0.2 - 11.8 ± 0.2 - 1.2 ± 0.1 2.7 ± 0.1 - 

   
S  '08 7 -20.5 ± 0.3 - 10.1 ± 0.4 - 1.3 ± 0.1 2.5 ± 0.1 - 

   
W  '09 2 -20.6 ± 0 - 11.8 ± 0.1 - 1.4 ± 0 2.7 ± 0 - 

 
Sagitta sp. Whole W  '08 3 -19.4 ± 0.2 - 14.5 ± 0.2 - 1.2 ± 0.1 3.5 ± 0.1 - 

   
S  '08 2 -19.3 ± 0.5 - 14.1 ± 0 - 1.2 ± 0.1 3.7 ± 0 - 

   
W  '09 3 -19.7 ± 0.2 - 14 ± 0.1 - 1.2 ± 0.1 3.4 ± 0 - 

Benthos 
           

DF/FF Mya eideri Mantle S  '07 5 -19.5 ± 0.4 a 8.3 ± 0.1 a ♪ 0.9 ± 0.1 2.0 ± 0.1 - 

   
S  '08 6 -20.1 ± 0.2 a 8.5 ± 0.3 a ♪ 1.1 ± 0.1 2.0 ± 0.1 - 
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W  '09 3 -19.8 ± 0.3 a 9.6 ± 0.2 b ♪ 0.9 ± 0.1 2.1 ± 0.1 - 

   
S  '09 1 -20.9 - 8.5 - 1.3 ± 0 2.0 ± 0.0 - 

 
Cistenides granulata Whole W  '09 4 -16.8 ± 0.6 a 9.3 ± 0.6 a 0.0 ± 0.2 2.0 ± 0.2 - 

   
S  '09 10 -16.1 ± 0.4 a 8.6 ± 0.3 a 0.0 ± 0.1 2.1 ± 0.1 - 

O/C/S Wandering anemone Soft S  '07 3 -19.2 ± 0.3 a ♣ 15.4 ± 1 a 1.3 ± 0 4.0 ± 0.3 - 

   
W  '08 5 -17.9 ± 0.8 b ♣ 16.6 ± 1.4 a 0.9 ± 0.2 4.2 ± 0.4 - 

 
Buccinum cyaneum Foot W  '08 5 -16.8 ± 0.7 a 16 ± 0.9 a ☼ 0.5 ± 0.2 4 ± 0.3 5.1 ± 1.8 

   
S  '08 5 -17.3 ± 0.6 a 12.9 ± 0.6 b ☼ 0.6 ± 0.1 3.3 ± 0.2 4.4 ± 0.9 

   
W  '09 2 -16.1 ± 0.2 a 16.2 ± 0.8 - 0.3 ± 0.1 4 ± 0.2 4.4 ± 0.1 

Consumers 
           

 
Somniosus 
microcephalus 

Plasma W  '08 10 -17.4 ± 0.3 a ♥ 17.2 ± 0.7 a 0.7 ± 0.1 4.3 ± 0.2 266.1 ± 20.8 

   
S  '08 8 -17 ± 0.3 b ♥ 17.1 ± 0.7 a 0.8 ± 0.1 4.6 ± 0.2 286.8 ± 27.3 

   
W  '09 17 -17.3 ± 0.2 a,b ♥ 16.9 ± 0.7 a 0.7 ± 0.1 4.2 ± 0.2 266.2 ± 30.7 

   
S  '09 7 -17.9 ± 1.3 a,b ♥ 16.9 ± 0.9 a 1.0 ± 0.4 4.5 ± 0.3 292.4 ± 17 

 
Amblyraja hyperborea Liver S  '07 1 -17.6 - 16.7 - 0.9 4.4 53 

   
W  '09 6 -17.9 ± 0.3 - 15.6 ± 0.2 - 0.8 ± 0.1 3.8 ± 0.1 57.5 ± 5.7 

 
Myoxocephalus scorpius Muscle W  '09 9 -18.4 ± 0.6 a ♦ 14.8 ± 0.5 a ◘ 0.9 ± 0.2 3.6 ± 0.2 20.8 ± 1.4 

   
S  '09 8 -19.4 ± 0.3 b ♦ 13.7 ± 0.5 b ◘ 1.2 ± 0.1 3.6 ± 0.1 21.2 ± 1.7 

 
Pusa hispida Liver S  '07 3 -18 ± 0 a ♯ 14.6 ± 0.4 a ☻ 0.9 ± 0.1 3.8 ± 0.1 109.7 ± 3.5 

   
W  '08 4 -18.3 ± 0.2 a ♯ 16.9 ± 0.6 b☻ 1.0 ± 0.1 4.2 ± 0.2 - 

   
S  '08 7 -18.2 ± 0.2 a ♯ 15.2 ± 0.7 a☻ 1.0 ± 0.1 4 ± 0.2 104.3 ± 16.8 

   
S  '09 6 -18.4 ± 0.4 a ♯ 14.7 ± 0.8 a☻ 1.0 ± 0.1 3.8 ± 0.2 111.8 ± 15.1 

   
W  '10 5 -19 ± 0.3 b ♯ 16.4 ± 1.2 a ☻ 1.2 ± 0.2 4.1 ± 0.4 116.8 ± 14.9 

Results from Welch's t tests and ANOVA: ☺F2,15=18.62, P<0.001, ♣ t= -3.126, df=5.3, P<0.03, ♥ F3,37=3.449, P<0.03, ♦ t=4.104, df=12.41, P<0.002, ♯ 
F4,20=7.055, P<0.001, ♪ F2,11=26.64, P<0.0001),  ☼ t=6.375, df=6.76, P<0.001, ◘ t=4.578, df=14.95, P<0.001, ☻ F4,20=7.038, P<0.001; Relative values 
of TP were calculated using M. eideri as a baseline, and M. eideri and C. granulata were used as the two endpoints in a two-source mixing model to 
calculate values of α (see text for details) 
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Table S6.2. Mean ± SD of indicator fatty acids (reported as relative proportions, %) from Cumberland Sound species sampled during 

summer (S, August) and winter (W, April) of 2007-2010. 

Functional 
group 

Species Tissue Date n 16:1n-7 18:1n-9 20:1n-9 20:4n-6 20:5n-3 22:6n-3 

Basal POM1 Whole  1 15.5 5.1 0.6 0.4 12.7 8.5 

 
Fucus sp. Leaf S '08 3 1.9±1 10.3±8.9 0.7±0.5 9.9±3.6 8.4±3 0.5±0.4 

 
Ice POM Whole W '09 1 6.8 12.8 10.7 1.2 3.7 3.1 

Zooplankton 
          

Herbivorou
s 

Calanus hyperboreus Whole S '07 5 16.6±1.3 2.4±0.4 10.5±2.4 0.2±0.1 16.9±2.3 9.3±0.6 

   
W '08 2 22.9±0.7 5.9±3 17.3±1.9 0.1±0 10.7±1 8.4±0.4 

   
S '08 5 17.3±0.7 3.9±0.3 11.3±0.9 0.2±0 20.8±0.7 8.9±1 

   
W '09 5 17.8±0.7 7.6±4 16.1±3.2 0.2±0 12.6±1.1 10.5±0.8 

 
Mysis sp. Whole W '09 1 18.6 9.8 3.9 0.4 24.4 8.9 

   
S '09 5 3.8±1.2 9.6±0.3 1.6±0.3 1.2±0.1 23.9±0.2 24.1±1.8 

Benthos 
          

O/C/S 
amphipods (Onisimus 
sp.) 

Whole S '08 5 12.6±1.7 24.2±6.5 8.4±6.3 1.0±0.3 8.9±1.7 9.9±2.3 

   
W '09 5 9.4±0.7 20.1±2.0 16.1±2.3 0.7±0.2 6.0±1 4.6±0.6 

 
Buccinum cyaneum Foot S '08 7 1.1±0.3 4.1±0.3 1.4±0.5 4.6±0.9 29.6±2.1 9.6±1.3 

   
W '09 1 1.9 7.8 6.6 2.5 23.7 8.2 

Consumer 
          

 
Somniosus 
microcephalus 

Plasma W '08 12 4.3±1 15.3±2.1 16.4±3.4 2.4±0.7 9.1±1.8 10.6±2.1 

   
S '08 8 4.5±1.9 16.1±1.6 16.9±2.1 2±0.5 8.1±1.7 11.3±2 

   
W '09 17 3.6±1.1 15.1±1.5 16.2±2 3±0.9 10.7±1.9 12.7±2.3 

   
S '09 7 4.9±2.5 15±1.9 14.6±2.1 2.5±0.8 10.2±1.1 13.3±1.1 

 
Amblyraja hyperborea Liver S '07 1 10.3 12.3 13.1 0.9 9 10.5 

   
W '09 12 10.1±0.9 13.8±1.7 15.9±1.1 0±0 7±1.3 13.8±1.3 

 
Myoxocephalus scorpius Muscle W '09 10 3.8±2.2 8.4±2.1 4.6±1.5 2.9±0.7 20.1±3.4 25.8±5 

   
S '09 8 4.6±0.5 7.1±0.6 2.3±0.9 2.0±0.2 17.8±0.9 26.4±2.7 

 
Pusa hispida Blubber S '07 2 19.3±0.1 17.1±8.5 9.7±2.7 0.3±0.1 7.3±1 9.5±0.2 

   
W '08 3 19.2±0.4 13.4±1.3 12.9±2.2 0.3±0 10.3±1 9.1±0.7 

   
S '08 6 22±5.1 19±2.7 7.1±3.1 0.5±0.3 8.9±2.2 9.5±1.8 

1. Data from Stevens et al. 2004 (southeast North Water Polyna, sampled during Autumn 1999 
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Table S6.3. Previously reported changes in carbon sources between summer and winter. 

POC type Trend in summer Trend in winter ID Reference 
Total POC   

 
 

 10.5 ±9.3 mmol C m-2d-1 in summer, open water 2.9 ±5.3 mmolCm-2d-1 in spring under 
ice 

1 
Moran et al. 2005 

 high in summer (150-300 mg C m-2d-1) lower in winter (30 -70 mg C m-2d-1) 2 Olii et al 2002 
 highest POC flux ~100 mg C m-2d-1 June and July lowest POC flux <20 mg C m-2d-

1April 
3 Juul-Pedersen et al. 

2010 
 more similar between summer and winter than other 

locations 
slightly higher in Feb. - April than 

summer and dominated by re-
suspended material 

3 
Lalande et al. 2009 

 higher in summer (dominated by autochthonous production 
and river input) 

lower in winter, dominated by re-
suspended material 3 

Lalande et al. 2009 

 higher in summer (dominated by autochthonous production 
and river input) 

lower in winter, dominated by re-
suspended material 4 

Lalande et al. 2009 

 maximum of ~7 g C m-2 in August low,  ~1 g C m-2 during fall and 
winter 

5 
Atkinson and 

Wacasey 1987 
 highest value in June lower but remained stable in winter 

through spring 5 
Juul-Pedersen et al. 

2008 

 highest in July (dominated by autochthonous production) low in winter 5 Lalande et al. 2009 
 increased between spring and summer decreased during winter 5 Sampei et al. 2004 
 highest in summer lowest in winter 6 Bauerfind et al. 1997 
 234-405  µg C l-1 150-572 µg C l-1 6 Werner 2006 
Phytoplankton   

 
 

 highest in May/June and August/September low in winter 2 Bauerfind et al. 2009 
 Chl a 50% of total POC Chl a negligible 2 Oliie et al 2002 
 Chl a flux increasing to 0.25-0.4 mg C m-2d-1May to June Chl a flux <0.1 mg C m-2d-1 in Feb.-

March and 0.15 in April 
2 

Renaud et al. 2007 

 phaeopigments and Chl a in top 9cm of sediments similar from January - July 
2 

Renaud et al. 2007 

 phytoplankton biomass higher in June/July lower in March 
2 

Wassmann et al. 
2006 

 density of cells 99% higher in summer than in winter very low density (<10 cells L-1) 2 Weslawski 191 

 protist cells dominated flux in July - August protist cells minimal in winter 3 Forest et al. 2008 
 Chl a flux ~0.7 mg C m-2d-1 June ~0.0 mg C m-2d-1 March 

3 
Juul-Pedersen et al. 

2010 
 sedimenting cells peaked in July - August negligible in winter 5 Hsaio 1987 
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 Chl a flux increased to 0.23 mg C m-2d-1 in May and 2.0 in 
June 

Chl a flux low, 0.01 mg C m-2d-1 5 Juul-Pedersen et al. 
2008 

 increased flux in May to June and from August to 
September 

negligible from October to April 
5 

Sampei et al. 2002 

 maximum phytoplankton carbon flux in May/June 
(contributed 21% to total POC flux over two years) 

lowest in winter 
5 

Sampei et al. 2004 

 Chl a >200 mg C m-2 in July and August negligible in March 5 Welch et al. 1992 
 phytoplankton biomass highest in July/August not present in winter 6 Rysgaard et al. 1999 
Fecal pellets  

 
 

 up to 260 mg C m-2 d-1 but variable among locations <1 mg C m-2 d-1 2 Oliie et al 2002 
 vertical flux ~150 mg C m-2 d-1 but retention was variable 

among locations (up to 96%) 
<3 mg C m-2 d-1 

2 
Riser et al. 2002 

 flux highest in July-August and pellets were not degraded fecal pellets were predominantly 
degraded 3 

Forest et al. 2008 

 two large fluxes: one in spring and one in fall minimum in winter 5 Sampei et al. 2002 
 maximum flux July to September (contributed 1% to total 

POC over two years) 
minimum in winter 

5 
Sampei et al. 2004 

 Calanus glacialis produced 0.6 fecal pellets ind-1h-1 in late 
May 

0 fecal pellets in early March 
3 

Seuthe et al. 2007 

 C. hyperboreus produced 0.35 fecal pellets ind-1h-1 in late 
May 

0 fecal pellets in early March 
3 

Seuthe et al. 2007 

 Metridia longa produced 1.1 fecal pellets ind-1h-1 in late 
May 

0 fecal pellets in early March 
3 

Seuthe et al. 2007 

   
 

 
Macroalgae Macroalgae detritus thought to provide a stable food source to consumers all year 

3 
Dunton and schell 

1987 

Detritus Detrital flux lowest in summer (July-August) Detrital flux high in winter (high all 
year except July-August) 3 

Forest et al. 2008 

Shelf ID (from Carmack and Wassmann 2006): 1. Bering/Chukchi Sea (shallow inflow shelf ) 2. Barents Sea (deep inflow shelf) 3. Beaufort Sea 
(narrow interior shelf) 4. Kara/Laptev/Siberian Seas (wide interior shelf) 5. Canadian archipelago (network outflow shelf) 6. East Greenland 
(longitudinal outflow) 
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Table S6.4. Changes in abundance or biomass between summer and winter in arctic zooplankton (Zoo), benthos (Ben) and upper trophic 

level fish, marine mammal and seabird consumers (Con). Species diet or feeding mode is reported (H: herbivore, O: omniovore, C: 

carnivore, DF/FF: deposit/filter feeder, O/C/S: omnivorous, carnivorous and/or scavenging). Change was categorized as higher in summer 

(1), higher in winter (2) or no change (3). 

Organism Diet Fun. 
Group 

Summer Winter Change Taxon Shelf 
ID 

Reference 

Calanus finmarchicus H Zoo <5 g dw m-2 8.7 g dw m-2 2 Copepoda 2 Soreide et al. 2008 

C. glacialis H Zoo peaked in June (1750 ind m-

2) 
lowest in Nov.-Jan. 

(<250 ind m-2) 
1 Copepoda 1 Ashjian et al. 2003 

C. glacialis H Zoo higher biomass in summer lower in winter 1 Copepoda 2 Soreide et al. 2003 

C. glacialis H Zoo 30.6 g dw m-2 <5 g dw m-2 1 Copepoda 2 Soreide et al. 2008 

C. glacialis H Zoo >30,000 ind m-2 <1000 ind m-2 1 Copepoda 2 Soreide et al. 2010 

C. glacialis H Zoo 5 g C m-2 August 4 g C m-2 January 1 Copepoda 3 Forest et al. 2011 

C. glacialis H Zoo August 1964 mg m-2 April 201 mg m-2 1 Copepoda 5 Grainger 1971 

C. glacialis H Zoo biomass typically higher in summer than winter but 
interannual variability high 

1 Copepoda 5 Michel et al. 2006 

C. glacialis H Zoo August 0.130 g m-2 April 0.100 g m-2 3 Copepoda 5 Conover and Siferd 
1993 

C. hyperboreus H Zoo abundance peaked in April 
with high numbers of CI 

lowest in Nov-Feb 
(<3000 ind m-2) 

1 Copepoda 1 Ashjian et al. 2003 

C. hyperboreus H Zoo 9.5 g C m-2 August 7.5 g C m-2 January 1 Copepoda 3 Forest et al. 2011 

C. hyperboreus H Zoo biomass typically higher in summer than winter but 
interannual variability high 

1 Copepoda 5 Michel et al. 2006 

C. hyperboreus H Zoo August 0.706 g m-2 April 0.304 g m-2 1 Copepoda 5 Conover and Siferd 
1993 

C. hyperboreus, C. 
glacialis, C. pacificus, 
Metridia longa 

H Zoo August 9 g dw m-2 April 2 g dw m-2 1 Copepoda 3 Forest et al. 2008 

cirripede nauplii H Zoo August 3885 mg m-2 April 0 mg m-2 1 Copepoda 5 Grainger 1971 

copepod nauplii H Zoo August 1161 mg m-2 April 2 mg m-2 1 Copepoda 5 Grainger 1971 

copepoda nauplii H Zoo 38.2% of total abundance 70.4%of total abundance 2 Copepoda 4 Abramova and 
Tuschling 2005 
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Metridia longa nauplii H Zoo peaked in Aug-Sept (1700-
2200 ind m-2) 

lowest in Dec-Apr (<100 
ind m-2) 

1 Copepoda 1 Ashjian et al. 2003 

Microcalanus 
pygmaeus naupulii 

H Zoo abundance 0 ind m-2 in 
August 

peaked in March (64,000 
ind m-2) 

2 Copepoda 1 Ashjian et al. 2003 

Acartia O Zoo August 49 mg m-2 April 12 mg m-2 1 Copepoda 5 Grainger 1971 

A. longiremis O Zoo (stage VI) June 95 (*1000 
mg m-3) 

April (stage VI) 1235 
(*1000 mg m-3) 

2 Copepoda 3 Horner and Murphy 
1985 

A. longiremis O Zoo 8.9% of total abundance 3.1%of total abundance 1 Copepoda 4 Abramova and 
Tuschling 2005 

Drepanopus bungei O Zoo 14.8% of total abundance 17.3% of total abundance 2 Copepoda 4 Abramova and 
Tuschling 2005 

Harpacticoida O Zoo 0.3% of total abundance 0.7%of total abundance 3 Copepoda 4 Abramova and 
Tuschling 2005 

Harpacticoida nauplii O Zoo June  (16,018*1000 ind m-3) April 12 (*1000 indm-3) 1 Copepoda 3 Horner and Murphy 
1985 

Limnocalanus 
macrurus 

O Zoo 6.3% of total abundance 0%of total abundance 1 Copepoda 4 Abramova and 
Tuschling 2005 

Metridia longa O Zoo peaked in June (30,000 ind 
m-2) 

lowest in Jul.-Dec. 
(<2500 ind m-2) 

1 Copepoda 1 Ashjian et al. 2003 

M. longa O Zoo 1.8 g C m-2 August 1 g C m-2 January 1 Copepoda 3 Forest et al. 2011 

M. longa O Zoo biomass typically higher in summer than winter but 
interannual variability high 

1 Copepoda 5 Michel et al. 2006 

M. longa O Zoo August 0.002 g m-2 April 0.035 g m-2 2 Copepoda 5 Conover and Siferd 
1993 

Microcalanus 
pygmaeus 

O Zoo 40,000 ind m-2 in August peaked in March 
(140,000 ind m-2) 

2 Copepoda 1 Ashjian et al. 2003 

M. pygmaeus O Zoo 0.9% of total abundance 1.4%of total abundance 2 Copepoda 4 Abramova and 
Tuschling 2005 

Oithona similis O Zoo 25,000 ind m-2 in August peaked in March (90,000 
ind m-2) 

2 Copepoda 1 Ashjian et al. 2003 

O. similis O Zoo high in Sept., peak in Nov. lower in Jan. - April 1 Copepoda 2 Lischka and Hagen 
2005 

O. similis O Zoo 6.8% of total abundance 1.6%of total abundance 1 Copepoda 4 Abramova and 
Tuschling 2005 

O. similis naupulii O Zoo abundance peaked in July 
325,000 ind m-2 

low in Dec. - Jan. 
(<25,000 ind m-2) 

1 Copepoda 1 Ashjian et al. 2003 

Pseudocalanus 
acuspes 

O Zoo high in May - July and in 
Nov. 

lower in Jan. - April 1 Copepoda 2 Lischka and Hagen 
2005 

P. acuspes O Zoo biomass typically higher in summer than winter but 
interannual variability high 

1 Copepoda 5 Michel et al. 2006 
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P. acuspes O Zoo August 0.132 g m-2 April 0.782 g m-2 2 Copepoda 5 Conover and Siferd 
1993 

P. major O Zoo 9.9% of total abundance 2.2%of total abundance 1 Copepoda 4 Abramova and 
Tuschling 2005 

P. minutus O Zoo higher in August and Sept. lower in Jan. - April 1 Copepoda 2 Lischka and Hagen 
2005 

Pseudocalanus sp. O Zoo (CV) June  (20,260 *1000 
ind m-3) 

April (CV) 26,561 
(*1000 ind m-3) 

2 Copepoda 3 Horner and Murphy 
1985 

Pseudocalanus sp. O Zoo August 7131 mg m-2 April 1070 mg m-2 1 Copepoda 5 Grainger 1971 

Triconia borealis  O Zoo 0.6% of total abundance 2.2%of total abundance 2 Copepoda 4 Abramova and 
Tuschling 2005 

Sagitta elegans C Zoo lower in summer higher in winter 2 Cheatognath 2 Soreide et al 2003 

Aeginoposis laurentii C Zoo June 383 (*1000 ind m-3) April 173 (*1000 ind m-

3) 
1 Cnidaria 3 Horner and Murphy 

1985 
Aglantha digitale C Zoo higher in summer lower in winter 1 Cnidaria 2 Soreide et al. 2003 

Beroe cucumis C Zoo higher in summer lower in winter 1 Cnidaria 2 Soreide et al. 2003 

Euphysa flammea C Zoo June 261 (*1000 ind m-3) April 796 (*1000 ind m-

3) 
2 Cnidaria 3 Horner and Murphy 

1985 
Halitholus cirratus C Zoo June 87 (*1000 ind m-3) April 91 (*1000 ind m-3) 3 Cnidaria 3 Horner and Murphy 

1985 
Mertensia ovum C Zoo 1.17 mg dw in summer 0.63 mg dw winter 1 Ctenophora 5 Welch et al. 1992 

Pleurobrachia pileus C Zoo June 87 (*1000 ind m-3) April 91 (*1000 ind m-3) 2 Ctenophora 3 Horner and Murphy 
1985 

Apherusa glacialis DF/FF Ben hihger in summer (6.5 ind 
m-2) 

lower in winter (2.1 ind 
m-2) 

1 Amphipoda 2 Werner and Auel 
2005 

A. glacialis DF/FF Ben June  267 (*1000 ind m-3) April 23 (*1000 ind m-3) 1 Amphipoda 3 Horner and Murphy 
1985 

Axinopsida orbiculata DF/FF Ben August (7.4  ind m-2) November 133 ind m-2 2 Mollusca 2 Pawlowska et al. 
2011 

A. orbiculata DF/FF Ben summer 97 ind m-2 winter 342 ind m-2 2 Mollusca 2 Kedra et al. 2010 

Cylichna occulta DF/FF Ben April (178) August (14.8  
ind m2) 

November 148 ind m-2 2 Mollusca 2 Pawlowska et al. 
2011 

Macoma calcarea DF/FF Ben summer 702 ind m-2 winter 129 ind m-2 1 Mollusca 2 Kedra et al. 2010 

Apistobranchus 
tullbergi 

DF/FF Ben summer 1,844 ind m-2 winter 4,840 ind m-2 2 Polychaeta 2 Kedra et al. 2010 

Capitella capitata DF/FF Ben August (393 ind m-2) November 122 ind m-2 1 Polychaeta 2 Pawlowska et al. 
2011 

C. capitata DF/FF Ben summer 884 ind m-2 winter 182 ind m-2 1 Polychaeta 2 Kedra et al. 2010 
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Chaetozone setosa DF/FF Ben highest in April after 
phytoplankton bloom 
(711.1 ind m-2) 

November 200.0 ind m-2 1 Polychaeta 2 Pawlowska et al. 
2011 

Chone 
paucibranchiata 

DF/FF Ben summer 613 ind m-2 winter 4 ind m-2 1 Polychaeta 2 Kedra et al. 2010 

Cirratulidae DF/FF Ben summer 2,591 ind m-2 winter 3,067 ind m-2 3 Polychaeta 2 Kedra et al. 2010 

Cossura longocirrata DF/FF Ben April (496 ind m-2) November 230 ind m-2 1 Polychaeta 2 Pawlowska et al. 
2011 Heteromastus 

filiformis 
DF/FF Ben August (15 ind m-2) November 119 ind m-2 2 Polychaeta 2 Pawlowska et al. 

2011 Leitoscoloplos 
mammosus 

DF/FF Ben summer 1,849 ind m-2 winter 342 ind m-2 1 Polychaeta 2 Kedra et al. 2010 

Lysippe labiata DF/FF Ben summer 938 ind m-2 winter 449 ind m-2 1 Polychaeta 2 Kedra et al. 2010 

Paraonella nordica DF/FF Ben summer 2,489 ind m-2 winter 62.2 ind m-2 1 Polychaeta 2 Kedra et al. 2010 

polychaete larvae DF/FF Ben June 1396 (*1000 ind m-3) April 81 (*1000 ind m-3) 1 Polychaeta 3 Horner and Murphy 
1985 

polychaete larvae DF/FF Ben August 404 mg/m-2 April 164 mg m-2 1 Polychaeta 5 Grainger 1971 

Anonyx nugax O/C/S Ben Jun-Aug %frequency=69 Nov-Feb %frequency=52 3 Amphipoda 2 Weslawski 1991 

A. sarsi O/C/S Ben Jun-Aug %frequency=94 Nov-Feb 
%frequency=100 

3 Amphipoda 2 Weslawski 1991 

Gammarus spp. O/C/S Ben Jun-Aug %frequency=6 Nov-Feb %frequency=19 2 Amphipoda 2 Weslawski 1991 

G. wilkitzkii O/C/S Ben similar in both summer and winter (2.0 and 1.5 ind m-2, 
respectively) 

3 Amphipoda 2 Werner and Auel 
2005 

Halirages mixtus O/C/S Ben June  2084 (*1000 ind m-3) April 947 (*1000 ind m-

3) 
1 Amphipoda 3 Horner and Murphy 

1985 
Onisimus edwardsi O/C/S Ben Jun-Aug %frequency=69 Nov-Feb %frequency=62 3 Amphipoda 2 Weslawski 1991 

O. littoralis O/C/S Ben Jun-Aug %frequency=50 Nov-Feb %frequency=33 1 Amphipoda 2 Weslawski 1991 

O. littoralis O/C/S Ben June  1456 (*1000 ind m-3) April 912 (*1000ind m-3) 1 Amphipoda 3 Horner and Murphy 
1985 

Onisimus spp. O/C/S Ben low in both seasons  3 Amphipoda 2 Werner and Auel 
2005 

Orchomene minuta O/C/S Ben Jun-Aug %frequency=38 Nov-Feb %frequency=43 3 Amphipoda 2 Weslawski 1991 

Eualus gaimardii O/C/S Ben Jun-Aug %frequency=6 Nov-Feb %frequency=0 1 Decapoda 2 Weslawski 1991 

Hyas araneus O/C/S Ben Jun-Aug %frequency=0 Nov-Feb %frequency=14 2 Decapoda 2 Weslawski 1991 



Pagurus pubescens O/C/S Ben Jun-

Nemertea O/C/S Ben summer 13 ind m

Fulmarus glacialis C Con present

Pagophila eburnea 
 

C Con 117 counted

P. eburnea C Con 52 counted in Aug

Rissa tridactyla C Con present

Somateria mollissima C Con present

Mallotus villosus C Con present

Salvelinus alpinus C Con present

Shelf ID (from Carmack and Wassmann 2006): 1. Bering/Chukchi Sea (shallow inflow shelf ) 2. Barents Sea (de
(narrow interior shelf) 4. Kara/Laptev/Siberian Seas (wide interior shelf) 5. Canadian archipelago (network outflow shelf) 6.
(longitudinal outflow) 

 

  

189 

-Aug %frequency=0 Nov-Feb 
%frequency=0.2 

2 Decapoda

summer 13 ind m-2 winter 351 ind m-2 2 Polychaeta

present 1-10% of summer 
population 

1 Aves 

117 counted in Aug-Sept 0 in April 1 Aves 

52 counted in Aug-Sept 0 in April 1 Aves 

present 1-10% of summer 
population 

1 Aves 

present 1-10% of summer 
population 

1 Aves 

present not present 1 Teleostei

present not present 1 Teleostei

Shelf ID (from Carmack and Wassmann 2006): 1. Bering/Chukchi Sea (shallow inflow shelf ) 2. Barents Sea (deep inflow shelf) 3. Beaufort Sea 
(narrow interior shelf) 4. Kara/Laptev/Siberian Seas (wide interior shelf) 5. Canadian archipelago (network outflow shelf) 6. East Greenland 

Decapoda 2 Weslawski 1991 

Polychaeta 2 Kedra et al. 2010 

2 Weslawski 1991 

5 Karnovsky et al. 
2009 

5 Karnovsky et al. 
2009 

2 Weslawski 1991 

2 Weslawski 1991 

Teleostei 2 Weslawski 1991 

Teleostei 2 Weslawski 1991 

ep inflow shelf) 3. Beaufort Sea 
East Greenland 
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Table S6.5. Changes in diet between summer and winter of arctic zooplankton (Zoo), benthos (Ben) and upper trophic level fish, marine 

mammal and seabird consumers (Con). Putative diet or feeding mode is reported (H: herbivore, O: omniovore, C: carnivore, DF/FF: 

deposit/filter feeder, O/C/S: omnivorous, carnivorous and/or scavenging). Change in diet was categorized as a switch from feeding in 

summer to reliance on internal reserves in winter (1), switch to a higher trophic position in winter (2), switch to a greater reliance on 

benthic/macroalgae-derived carbon in winter (3) or no change (4).  

Species Diet 
Fun. 

Group 
Summer Winter Change Taxon ID Reference 

C. finmarchicus H Zoo feeding on phytoplankton 
overwintering driven by stored 

lipids 
1 Calanoida * 

Hopkins et al. 
1984 

C. finmarchicus 
H Zoo δ13C=-22.8±0.3, δ15N=7.2 -22.4±0.8, δ15N=7.9 1 Calanoida 2 Sato et al. 2002 

C. finmarchicus 
H Zoo 

δ13C=-23.8±1.9, 
δ15N=7.4±0.4 

δ13C=-20.0±0.4,  and δ15N 
9.7±0.3 

1 Calanoida 2 
Soreide et al. 

2006 

C. finmarchicus 
H Zoo feeds on phytoplankton overwinters relying on lipids 1 Calanoida * 

Sargent and 
Falk-Petersen 

1988 
C. finmarchicus 

H Zoo 
primarily herbivorous in 

August/summer 

likely in diapause, might have 
been opportunistically feeding 

in December 
1 Calanoida 2 

Soreide et al. 
2009 

C. glacialis H Zoo May CVI δ15N=8.1 January CVI δ15N=9.5 1 Calanoida 2 Sato et al. 2002 
C. glacialis 

H Zoo δ13C -23.6±0.2, δ15N 7.1±0.3 δ13C -21.7±0.7, δ15N 9.7±0.2 1 Calanoida 2 
Soreide et al. 

2006 

C. glacialis 
H Zoo 

primarily omnivorous in 
August/summer 

likely in diapause (not feeding) 
but some opportunistically 

feeding in December based on 
d15N 

1 Calanoida 2 
Soreide et al. 

2009 

C. glacialis 
H Zoo δ13C=-24.10, δ15N=12.41 δ13C=-21.57, δ15N=10.92 1 Calanoida 3 Forest et al. 2011 

C. hyperboreus H Zoo 
δ13C=-23.0±0.2, 
δ15N=7.5±0.4 

δ13C=-21.9±0.8, δ15N=9.3±0.2 1 Calanoida 2 
Soreide et al. 

2006 
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C. hyperboreus 
H Zoo 

primarily herbivorous in 
August/summer 

did not feed based on δ15N 1 Calanoida 2 
Soreide et al. 

2009 

C. hyperboreus 
H Zoo δ13C=-23.47, δ15N=11.23 δ13C=-21.59, δ15N=7.94 1 Calanoida 3 Forest et al. 2011 

C. hyperboreus 
H Zoo phytoplankton diet in summer 

overwintering driven by stored 
lipids 

1 Calanoida 5 Lee 1974 

Metridia longa O Zoo feeding on phytoplankton 
likely takes non-phytoplankton 

food in winter 
2 Calanoida * 

Hopkins et al. 
1984 

M. longa O Zoo CVI δ15N=8.2 CVI δ15N=9.6 2 Calanoida 2 Sato et al. 2002 

M. longa O Zoo feeds on phytoplankton feeds on Calanus copepods 2 Calanoida * 
Sargent and 

Falk-Petersen 
1988 

Pseudocalanus 
minutus 

O Zoo 
ate flagellate/dinoflagellate diet 

in summer 
omnivorous in winter 2 Calanoida 2 

Lischka and 
Hagen 2007 

Thysanoessa 
raschii 

O Zoo feeding on phytoplankton 
likely takes non phytoplankton 

food 
1 Euphausiacea * 

Hopkins et al. 
1984 

T. raschii O Zoo feeding on phytoplankton 
likely takes non phytoplankton 
food (e.g. small copepods) in 

winter 
2 Euphausiacea * 

Sargent and 
Falk-Petersen 
1981& Falk-
Petersen et al. 

1981 

Thysanoessa 
inermis 

O Zoo feeding on phytoplankton 
likely takes non phytoplankton 
food (e.g. small copepods) in 

winter 
2 Euphausiacea * 

Sargent and 
Falk-Petersen 
1981& Falk-
Petersen et al. 

1981 

T. inermis O Zoo feeding on phytoplankton 
overwintering and gonad 

maturation driven by lipids 
stored during spring/summer 

1 Euphausiacea * 
Hopkins et al. 

1984 

T. inermis O Zoo 
δ13C=-21.6±0.3, 

δ15N=8.2±0.6 (size 10-
19mm) 

δ13C=-21.9±0.2, δ15N=9.4±0.1 
(size 17-19mm) 

4 Euphausiacea 2 Soreide et al 
2006 

Mysis litoralis O Zoo 
δ13C=-21.2±0.3 (29% reliance 

on macroalgae) 
δ13C=-19.4±0.3 (48% reliance 

on macroalgae) 
3 Mysida 3 

Dunton and 
Schell 1987 

Paraeuchaeta 
norvegica 

C Zoo sδ13C=-20.6, δ15N=9.8 
δ13C=-20.7±0.7, 
δ15N=10.5±0.3 

4 Calanoida 2 
Soreide et al. 

2006 
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Sagitta elegans C Zoo δ13C=-19.3±0.8, 
δ15N=11.9±0.2 

δ13C=-20.8±0.3, 
δ15N=12.2±0.1 

4 Chaetognatha 2 Soreide et al 
2006 

Aglantha 
digitale 

C Zoo 
δ13C=-21.0±0.4, 
δ15N=10.4±0.1 

δ13C=-19.7±0.6, δ15N=9.6±0.4 4 Cnidaria 2 
Soreide et al 

2006 
Lucernaria 

infundibulum 
C Zoo δ13C=-20.5 

δ13C=-19.0±0.8 (increased 
reliance of prey on macroalgae) 

3 Cnidaria 3 
Dunton and 
Schell 1987 

Beroe cucumis C Zoo 
δ13C=-20.9±0.5, δ15N 

11.2±0.2 
δ13C=-20.8±0.3, 
δ15N=10.3±0.3 

4 Ctenophora 2 
Soreide et al 

2006 

Mertensia ovum C Zoo 
δ13C=-23.0±0.6, 
δ15N=9.7±0.4 

δ13C=-23.2±0.8, δ15N 8.2±0.2 4 Ctenophora 2 
Soreide et al 

2006 
Thysanoessa 

libellula 
C Zoo 

δ13C=-22.7±0.3, 
δ15N=10.7±0.2 

δ13C=-22.8±0.7, δ15N=9.8±0.5 4 Euphausiacea 2 
Soreide et al 

2006 

T. longicaudata C Zoo 
δ13C=-20.8±0.5, 
δ15N=9.2±0.1 

δ13C=-22.1±0.3, δ15N=9.2±0.2 4 Euphausiacea 2 
Soreide et al 

2006 

Meganyctiphan
es norvegica 

C Zoo accumulates lipids all year likely feeding on copepods 4 Euphausiacea * 

Sargent and 
Falk-Petersen 
1981& Falk-
Petersen et al. 

1981 
Apherusa 

glacialis 
DF/FF Ben 

ice algae during productive 
period 

internal reserves 1 Amphipoda 2 
Werner and Auel 

2005 
Ctenodiscus 

crispatus 
DF/FF Ben 

δ13C=-18.4±0.2, 
δ15N=11.2±0.9 

δ13C=-17.8, δ15N=11.4 4 Echinodermata 2 
Renaud et al. 

2011 
Ophiacantha 

bidentata 
DF/FF Ben δ13C=-18.0, δ15N=15.1 δ13C=-17.8, δ15N=12.8 4 Echinodermata 2 

Renaud et al. 
2011 

Ophiopholis 
aculeata 

DF/FF Ben 
δ13C=-18.3±0.3, 
δ15N=8.6±0.4 

δ13C=-17.4, δ15N=11.9 4 Echinodermata 2 
Renaud et al. 

2011 
Ophiopholis 

sarsi 
DF/FF Ben δ13C=-19.3, δ15N=8.0 δ13C=-19.1±0.2, δ15N=9.6±0.3 4 Echinodermata 2 

Renaud et al. 
2011 

Strongylocentro
tus sp. 

DF/FF Ben δ13C=-17.9, δ15N=9.9 δ13C=-16.8±0.3, δ15N=9.5±0.5 4 Echinodermata 2 
Renaud et al. 

2011 
Macoma 

clcarea 
DF/FF Ben consumed similar foods that did not vary in quality 4 Mollusca 1 

Lovvorn et al. 
2005 

Nucula belloti DF/FF Ben 
consumed similar foods that did not vary in quality 

4 Mollusca 1 
Lovvorn et al. 

2005 

Nuculana 
radiata 

DF/FF Ben 
consumed similar foods that did not vary in quality 

4 Mollusca 1 
Lovvorn et al. 

2005 

Polyplacophora DF/FF Ben δ13C=-17.5, δ15N=10.1 δ13C=-17.8, δ15N=10.6 4 Mollusca 2 Renaud et al. 
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2011 

Flabelligera 
affinis 

DF/FF Ben δ13C=-20.8 
δ13C=-19 (increased reliance on 

macroalgae) 
3 Polychaeta 3 

Dunton and 
Schell 1987 

Ophelina 
acuminata 

DF/FF Ben δ13C=-18.8, δ15N=9.2 δ13C=-19.2, δ15N=9.0 4 Polychaeta 2 
Renaud et al. 

2011 

Anonyx nugax O/C/S Ben δ13C=-22.26, δ15N=11.10 δ13C=-21.58, δ15N=10.51 4 Amphipoda 2 
Legenzynska et 

al. 2012 

A.  sarsi O/C/S Ben δ13C=-22.2 
δ13C=-20.2±0.1 (increased 

reliance onmacroalgae) 
3 Amphipoda 3 

Dunton and 
Schell 1987 

A.  sarsi O/C/S Ben δ13C=-20.3, δ15N=9.65 δ13C=-20.62, δ15N=10.37 4 Amphipoda 2 
Legenzynska et 

al. 2012 
Arrhis 

phyllonyx 
O/C/S Ben δ13C=-20.85, δ15N=10.44 δ13C=-20.32, δ15N=10.07 4 Amphipoda 2 

Legenzynska et 
al. 2012 

Gammarus 
wilkitzkii 

O/C/S Ben 
ice algae during productive 

period 
ice fauna and zooplankton 
(some internal reserves) 

2 Amphipoda 2 
Werner and Auel 

2005 

Hyperia galba O/C/S Ben 
δ13C=-21.2±0.4, 
δ15N=9.9±0.5 

δ13C=-22.4±0.2, 
δ15N=10.5±0.2 

4 Amphipoda 2 
Soreide et al 

2006 

Onisimus affinis O/C/S Ben 
similar protein, lipid and carbohydrate in August and February, 

suggests no lipid accumulation and constant feeding all year 
4 Amphipoda 5 Percy 1979 

Onisimus 
caricus 

O/C/S Ben δ13C=-22.14, δ15N=10.86 δ13C=-21.97, δ15N=10.86 4 Amphipoda 2 
Legenzynska et 

al. 2012 
Onisimus 

edwardsi 
O/C/S Ben δ13C=-21.10, δ15N=8.84±1.83 δ13C=-20.9, δ15N=9.27 4 Amphipoda 2 

Legenzynska et 
al. 2012 

Onisimus 
glacialis 

O/C/S Ben herbivory (algae) carnivory (e.g. zooplankton) 2 Amphipoda 2 
Werner and Auel 

2005 
Onisimus 

litoralis 
O/C/S Ben diatoms in June crustaceans in April 2 Amphipoda 3 

Cary and 
Boudrias 1987 

Onisimus 
nanseni 

O/C/S Ben similar diet in both seasons - opportunistic on zooplankton, etc. 4 Amphipoda 2 
Werner and Auel 

2005 
Onisimus 

similus 
O/C/S Ben 

year round omnivorous/carnivorous feeding on 
flagellates/dinoflagellates 4 Amphipoda 2 

Lischka and 
Hagen 2007 

Paroediceros 
lynceus 

O/C/S Ben generally similar fatty acid profiles during summer and winter 4 Amphipoda 2 
Legenzynska et 

al. 2012 
Pontoporeia 

femorata 
O/C/S Ben generally similar fatty acid profiles during summer and winter 4 Amphipoda 2 

Legenzynska et 
al. 2012 

Themisto 
libellula 

O/C/S Ben 
δ13C=-22.7±0.1, 
δ15N=8.7±0.2 

δ13C=-22.8±0.7, δ15N=9.8±0.5 4 Amphipoda 2 
Soreide et al. 

2006 
Pandalus 

borealis 
O/C/S Ben 

δ13C=-19.2±0.4, 
δ15N=12.5±0.4 

δ13C=-19.1±0.1, 
δ15N=12.0±0.9 

4 Decapoda 2 
Renaud et al. 

2011 
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Clione limacina O/C/S Ben δ13C=-22.8±0.6 and 
δ15N=10.1±0.3 

δ13C=-22.5±0.6, δ15N=9.4±0.2 4 Mollusca 2 Soreide et al 
2006 

Eubranchus sp. O/C/S Ben δ13C=-18.5 δ13C=-21.2±0.7 3 Mollusca 3 
Dunton and 
Schell 1987 

Eunoe oerstedi O/C/S Ben δ13C=-18.4, δ15N=13.1 δ13C=-18.1, δ15N=11.9 4 Polychaeta 2 
Renaud et al. 

2011 

Lumbrineris sp. O/C/S Ben δ13C=-18.6, δ15N=10.8 δ13C=-18.2, δ15N=11.0 4 Polychaeta 2 
Renaud et al. 

2011 

Nephtys sp. O/C/S Ben 
δ13C=-19.2±0.5, 
δ15N=12.6±0.3 

δ13C=-18.9, δ15N=12.0 4 Polychaeta 2 
Renaud et al. 

2011 

Gadus morhua C Con 
δ13C=-19.4±0.3, 
δ15N=12.3±0.5 

δ13C=-18.4±0.5, 
δ15N=12.8±0.3 

4 Teleostei 2 
Renaud et al. 

2011 
Boreogadus 

saida 
C Con copepods, mysis copepods, mysis, fish 2 Teleostei 1 Craig et al. 1982 

Gymnocanthus 
tricuspis 

C Con 
δ13C=-17.4±0.3, 
δ15N=14.2±0.4 

δ13C=-18.2±0.7, 
δ15N=14.3±0.9 

4 Teleostei 2 
Renaud et al. 

2011 
Myoxocephalus 

scorpius 
C Con 

δ13C=-17.7±0.8, 
δ15N=14.2±1.0 

δ13C=-17.8±0.8, 
δ15N=14.2±0.7 

4 Teleostei 2 
Renaud et al. 

2011 

Alle alle C Con 
consumed herbivorous 
copepods in spring and 

summer 

switched to higher trophic level 
in fall feeding on amphipods 

and fish 
2 Aves 5 

Karnovsky et al. 
2008 

A. alle C Con Calanus copepods in summer 
feeding at higher trophic level in 

winter 
2 Aves 2 Fort et al. 2010 

A. alle C Con Calanus copepods in summer 
likely feeding on copepods in 

winter 
4 Aves 6 Fort et al. 2010 

Fulmarus 
glacialis 

C Con 
cephalopods, polychaets, 

crustaceans 
switch to higher tropihc position 

in winter 
2 Aves 5 

Mallory et al. 
2010 

Rissa tridactlya C Con fed all year on carnivorous amphipods and fish 4 Aves 5 
Karnovsky et al. 

2008 
Somateria 

mollissima 
C Con δ13C=-18.7±0.3, δ15N=11±0.7 

δ13C=-17.9±0.5, 
δ15N=10.9±0.8 

3 Aves 2 
Renaud et al. 

2011 

Uria lomvia C Con 
fed all year on carnivorous 

amphipods and fish  
4 Aves 5 

Karnovsky et al. 
2008 

Cystophora 
cristata 

C Con squid, polar cod squid, capelin 4 Mammalia 6 Haug et al. 2005 

Monodon 
monodon 

C Con arctic cod, polar cod, squid Greenland halibut and squid 2 Mammalia 5 
Laidre et al. 

2005 
Phoca 

groenlandica 
C Con Parathemisto added krill and capelin 2 Mammalia 6 Haug et al. 2005 

Pusa hispida C Con rely heavily on pelagic prey consume benthic prey 3 Mammalia 2 Weslawski et al 
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1994 

P. hispida C Con invertebrates and fish fish 2 Mammalia 5 Smith 1987 

P. hispida C Con saffron cod arctic cod 4 Mammalia 1 Lowry 1980 

P. hispida C Con saffron cod and shrimp arctic cod 2 Mammalia 1 Lowry 1980 

P. hispida C Con shrimp arctic cod 2 Mammalia 1 Lowry 1980 

P. hispida C Con amphipods arctic cod 2 Mammalia 3 Lowry 1980 

Shelf ID (from Carmack and Wassmann 2006): 1. Bering/Chukchi Sea (shallow inflow shelf ) 2. Barents Sea (deep inflow shelf) 3. Beaufort Sea 
(narrow interior shelf) 4. Kara/Laptev/Siberian Seas (wide interior shelf) 5. Canadian archipelago (network outflow shelf) 6. East Greenland 
(longitudinal outflow), * Balsfjorden, northern Norway 
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Fig. S6.1. Mean ± SD of δ13C and δ15N (‰) for basal resources sampled from various 

arctic regions (references indicated by numbers on x axis) during summer and winter.  

 
Resources: particulate organic matter (POM), POM detritus (detritus), sedimenting particles (Sed.Part.), 
sediment, macroalgae; References (location): 1. Sato et al. 2002 (Svalbard), 2. Søreide et al. 2008 
(Svalbard), 3. Lovvorn et al. 2005 (Bering Sea), 4. Legenzynska et al. 2012 (Svalbard), 5. Baerfind et al. 
1997 (east Greenland), 6. this study (eastern Baffin Island) 
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Fig. S6.2. Non metric multidimensional scaling performed on A. primary producers, 

zooplankton and benthos and B. fish and marine mammal consumers sampled from 

Cumberland Sound, Nunavut during summer (August) and winter (April). 
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GENERAL DISCUSSION 
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FINDINGS 

 Theoretical and empirical studies have revealed that resource variability (Polis 

and Strong 1996; McCann and Rooney 2009), consumer coupling of these resources in 

space (Rooney et al. 2006) and perhaps in time (Polis et al. 1996; McCann et al. 2005), as 

well as intra-specific diet variability (i.e. individual specialization (IS), Bolnick et al. 

2003; Araújo et al. 2011), are common structures in real food webs (Fig. 1.1-1.3). 

Beyond being common, however, these structures are associated with the ability of food 

webs to persist through time by providing a steady resource base to consumers (McCann 

et al. 2005; Rooney et al. 2006) and decreasing intra-specific competition at the level of 

individuals (Bolnick et al. 2003; Svanbäck and Bolnick 2005). The goal of this 

dissertation was to unite the current understanding of energy flow in arctic marine food 

webs with recent predictions from theory by asking: do predicted structures (i.e. resource 

coupling and individual specialization (IS), Fig. 1.1-1.3) arise in systems that experience 

high degrees of temporal environmental variability and abiotic-driven resource 

fluctuation? 

 The findings of this dissertation contribute to science in two broad areas: 1) by 

identifying structures in arctic food webs that are potentially important for their 

persistence and 2) by revealing the ubiquity of the aforementioned structures in natural 

systems. Arctic food webs were predicted to be structured differently than previously 

observed food webs due to lower diversity and biomass in arctic vs temperate, tropical 

and Antarctic seas (Grebmeier and Barry 1991; Hillebrand 2004; Piepenburg et al. 2011), 

as well as the long separation between periods of primary production with which arctic 

animals must contend (Weslawski et al. 1991). Specifically, arctic food webs were 

predicted to exhibit: 1) low resource coupling in space during the open-water period, due 
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to the dominance of phytoplankton as a resource to both benthic and pelagic consumers 

(Graeve et al. 1997; Søreide et al. 2006; Renaud et al. 2011), 2) low individual 

specialization, due to the expectation that arctic consumers will feed as generalists 

(MacArthur 1955; Rooney et al. 2006) and 3) low temporal resource coupling between 

summer and winter, due to the likelihood of consumers feeding on similar prey all year 

and not switching their diet with season (Werner and Auel 2005; Legezynska et al. 2012). 

Results of this dissertation both agree with and deviate from the above predictions. 

However, in general, the arctic food webs studied here were structured such that 

resources varied asynchronously in space (Chapter 3) and time (Chapter 6) and that some, 

but not all, consumers coupled these resources (Chapter 3 and 6) through generalist 

feeding behaviour (Chapter 5), which agrees with theoretical predictions for Chapter 3 

and 6 (i.e. Figs. 1.1 and 1.3). Conclusions drawn in the present dissertation have several 

implications, which are discussed below in light of their contributions to science. 

CONTRIBUTIONS TO SCIENCE 

Food web ecology 

 Agreement between empirical observations and predicted patterns in Chapter 3 

indicates that the coupling of different resources in space by consumers imparts a flexible 

nature to food webs, and increases their persistence (Rooney et al. 2006). Further, the 

recognition that not all consumers acted as spatial resource couplers, which has been 

discussed previously in the literature (Araújo et al. 2011; Matich et al. 2011), has special 

relevance in the arctic given the nature of these 'non-coupling' consumers. Species like 

capelin and herring that did not couple phytoplankton and macroalgae resource 

compartments (Chapter 3), have already increased their presence in arctic seas and shifted 
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arctic food webs towards more pelagic-dominated food chains (Grebmeier et al. 2006). In 

the context of food web theory, as food webs become increasingly dominated by the 'fast' 

phytoplankton resource compartment, there will be less of a 'slow' resource base (i.e. 

benthic/detrital consuming prey) to support consumers when seasonal phytoplankton 

production ceases.  

 No arctic ecologist will be surprised by the empirical observations summarized in 

Chapter 6, notably that zooplankton have different times of peak abundance and that 

some consumers switch their diet between summer and winter. However, this is the first 

time that these patterns have been 1) compiled from across the arctic, 2) investigated 

across an entire food web in both benthic and pelagic animals, and 3) united with 

predictions from food web theory. The agreement between observed patterns and 

theoretical predication in Chapter 6 makes a crucial but yet  unmade connection between 

structure and potential function. Similar to the conclusions drawn for space (see 

preceding paragraph), temporal resource asynchrony and coupling by consumers of this 

resource variability through time are likely important for the persistence of arctic food 

webs. By viewing species in arctic food webs in light of their role, with regards to acting 

as a resource coupler or as a resource for upper trophic levels (i.e. by viewing arctic food 

webs through the lens of food web theory, Fig. 6.7), one has an increased ability to 

interpret predicted changes associated with a warming climate (e.g. in species 

composition or biomass) in regards to the potential effects on food web persistence.  

Intra-specific trait variation in seasonal environments 

 Individual specialization is being increasingly reported in a variety of species 

(Bolnick et al. 2003; Araújo et al. 2011), which runs counter to the notion that generalists 
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are common and important in food webs (MacArthur 1955; Polis and Strong 1996; Polis 

et al. 1996). Based on results from Chapter 5, even though high IS might be predicted in 

Greenland sharks, due to potentially high intra-specific competition, the extent of IS was 

variable through time and is therefore unlikely to remain high in Greenland sharks. 

Findings of Chapter 5 indicate that Cumberland Sound Greenland sharks feed as 

generalists, but are able to exploit a small subset of resources for a given time, feeding as 

'short term specialists' using the terminology of Bolnick et al. (2003). This result raises 

the important considerations that studies should make some attempt, not only to 

document the extent of IS, but to categorize its variability through time. Chapter 5 

contributed to science by answering several of the questions raised by Bolnick et al. 

(2003), including whether populations can be composed of both individual specialists and 

individual generalists (this was the case in Greenland sharks) and whether IS varies or 

remains constant through time (it did not in the Greenland shark).   

  Results of Chapter 5 support the alternate hypothesis for this dissertation, that 

observed patterns would deviate from theoretical predictions (Fig. 1.2). Unfortunately, 

data do not exist to quantify the strength of intra-specific competition in Cumberland 

Sound Greenland sharks, and it cannot be ruled out that low intra-specific competition 

gave rise to low IS (i.e. and that the theoretical prediction should therefore have been low 

IS). Regardless, Chapter 5 still provides important contributions to science, notably by 

indicating that populations of apparent generalists, like the Greenland shark, can be 

composed of individual generalists and that IS can vary through time in an arctic 

consumer. Clearly, there is a need to further address the extent of IS in other arctic 
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marine consumers, but results from Chapter 5 support the conclusions of Chapters 3 and 

6 that flexible feeding behaviour is likely an important strategy for arctic consumers.  

Application of stable isotopes and fatty acids 

 The combined application of stable isotopes and fatty acids to explore consumer 

feeding behaviour in the arctic is not new (Søreide et al. 2008; Falk-Petersen et al. 2000). 

This dissertation, however, is the first attempt to apply both chemical tracers to test 

hypotheses about arctic food web structure generated from recent theory (Rooney et al. 

2006; Bolnick et al. 2011). Further, very few studies have attempted to calculate trophic 

positions of (from δ15N) or relative carbon source use by (from δ13C) species sampled in 

the winter using stable isotopes (but see Søreide et al. 2008). Several challenges arise 

when attempting the aforementioned task, including: 1) sampling appropriate baselines 

during winter and 2) sampling appropriate tissues to capture a diet switch between 

summer and winter if one exists. Choosing baselines for the open-water food web 

(Chapter 3), C. hyperboreus and the limpet (T. testudinalis), was straightforward because 

these species were known to consume phytoplankton (Søreide et al. 2008) and 

macroalgae (Fredriksen 2003), respectively. Fatty acids were useful for supporting these 

designations due to high phytoplankton biomarkers (e.g. 16:1n-7) in the former and 

macroalgae biomarkers (e.g. 20:4n-6) in the latter (Chapter 3). However, sampling 

appropriate baselines was more difficult in the winter because C. hyperboreus does not 

feed (Søreide et al. 2008). The fact that the benthic filter-feeding clam (M. eideri) had 

significantly higher δ15N in winter and that the deposit-feeding polychaete (C. granulata) 

had lower δ13C (but not significantly so) indicates that these species were incorporating 
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the signature of more degraded material in the winter. Thus, these species were 

appropriate choices for winter baselines. 

 Another obvious challenge was whether or not the turnover time of stable isotopes 

and fatty acids would be rapid enough to allow the detection of a seasonal diet switch if 

one existed (Chapter 6). To account for this issue, faster turnover tissues like liver 

(MacNeil et al. 2005) and plasma (Kӓkelӓ et al. 2009) were sampled. However, it is 

important to note that sampling different tissues from different consumers prevented 

direct comparisons of calculated trophic positions and % reliance on pelagic carbon 

between species (Chapter 6). The methodology employed in Chapter 6 will be useful for 

future studies focused on investigating winter food web structure.   

 In addition to overcoming challenges associated with stable isotopes, this 

dissertation provides two novel fatty acids data sets that explore: 1) the seasonal lipid 

strategy of C. hyperboreus over two consecutive years (Chapter 2) and 2) the extent that 

dietary fatty acids are modified by a shark (Chapter 4). Lipids are a hugely important 

'currency' in the arctic, and one that is threatened by warming climates due to decreased 

phytoplankton quality (Falk-Petersen et al. 2007). The results of Chapter 2 revealed that 

several fatty acids (e.g. 18:1n-9, 20:1n-9) were not consistently depleted in C. 

hyperboreus sampled during late winter vs. summer, suggesting that these fatty acids may 

actually be retained during the winter for other purposes. One intriguing possibility is that 

MUFA like 18:1n-9 are important for membrane competency (see discussion in Chapter 

2). The data presented in Chapter 2 will be important for future monitoring of C. 

hyperboreus and were important in the context of this dissertation by revealing how 
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variable the seasonal cycle of fatty acids was from year-to-year in this key herbivore from 

Cumberland Sound. 

 Chapter 4 revealed that Greenland sharks accumulate higher MUFA in their liver 

than obtained in their prey, and subsequently, that liver did in fact differ the most from 

prey fatty acids, as predicted. This information is crucial for future studies focused on 

fatty acids in sharks and will increase the ability of researchers to more accurately 

interpret their fatty acid data. Further, results obtained in Chapter 4 were a necessary first 

step to establish which fatty acid may be appropriate for exploring individual-level 

resource use by Greenland sharks (Chapter 5). By applying stable isotopes and fatty acids 

to test predictions from theoretical work, and to study fatty acid metabolism in a lower 

and upper trophic level arctic consumer, contributions of this dissertation have both 

theoretical and applied implications. 

FUTURE WORK 

 Findings of this dissertation reveal that arctic food webs do exhibit food web 

structures similar to those observed in temperate environments and predicted from 

theoretical models (McCann et al. 2005; Rooney et al. 2006), in spite of their low 

diversity and high seasonality. Individual specialization, when it did arise, was not stable 

through time, such that Greenland sharks can be considered generalists or only 'short term 

specialists' (Bolnick et al. 2003). The next step is to add in detail about when and where 

these structures differ among arctic areas, and subsequently, where the stabilizing 

mechanisms of spatial and temporal coupling, as well as the extent of IS, could be 

differentially important throughout the arctic. Exploring these unknowns will increase our 

ability to link structure and function in a variety of ecosystems, and to better understand 
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how systems will respond to change. I pose two questions here as directions for future 

work. 

 

1) What factors drive differences in structure and the strength  of different mechanisms 

among arctic food webs? 

 Because arctic seas differ in their properties (e.g. benthic-pelagic coupling and 

productivity, reviewed by Carmack and Wassmann 2006), it is important to now explore 

in more detail: 1) when and where does the relative strength of spatial and temporal 

coupling, for food web persistence, vary among arctic areas? and 2) what mechanisms 

generate and maintain these structures? Quantifying the extent of coupling by consumers 

among different arctic seasons not studied here (e.g. spring, fall) and in different arctic 

areas would help answer these questions.  

 Intriguing insight into how the strength of spatial resource coupling by consumers 

may vary throughout the arctic is provided by work conducted along gradients in the 

Chukchi and Beaufort seas. Dunton et al. (2006) found that consumers sampled in the 

Chukchi Sea (including both zooplankton and benthos) used carbon primarily of marine 

origin (δ13C ranged from ~ -18 to -21‰), indicating tight benthic-pelagic coupling, 

whereas conspecifics from the Eastern Beaufort Sea used both terrestrial and marine 

carbon (δ13C range ~ -18 to -26‰), indicating weaker benthic-pelagic coupling. A similar 

situation was indentified within the benthic communities of the Anadyr Water (western 

Chukchi Sea) and the Alaska Coastal Water (eastern Chukchi Sea) (Iken et al. 2010). 

Higher benthic-pelagic coupling was concluded to occur in the more productive Anadyr 

Water (benthic consumers δ13C range=4.6‰) than in the less productive, more 
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terrestrially influenced Alaska Coastal Water (δ13C range=6‰) (Iken et al. 2010). Iken et 

al. (2010) found that food chain length did not differ between these two locations, and 

therefore, the authors found no evidence to support the productivity hypothesis. However, 

the authors make the important observation that the allocation of biomass to different 

trophic levels did differ, with benthic biomass being higher and dominated by suspension 

and surface-deposit feeding clams in the Anadyr Water, and omnivorous/ carnivorous 

polychaetes dominating infaunal biomass in the Alaska Coastal Water (Iken et al. 2010).  

 Spatial differences also exist throughout the arctic in what resources drive entire 

food webs. For example, food webs of the Beaufort Sea area are dependent on microbial-

processed terrestrial carbon (Dunton et al. 2012). The requirement of terrestrial carbon to 

be degraded by microbes prior to incorporation by consumers (Dunton et al. 2012) 

indicates that these food webs are dominated by 'slow' resource compartments (sensu 

Rooney et al. 2006). In contrast, food webs in the Canadian arctic, including Cumberland 

Sound (Chapter 3 and 6), and in the Barents Sea, in Svalbard seas, for example (Renaud 

et al. 2011), are driven by 'fast' phytoplankton production in the summer, which supports 

both benthic and pelagic food chains. However, results of the present dissertation reveal 

that the Cumberland Sound food web was also supplemented by 'slow' energy channels 

like macroalgae (Chapter 3) similar to the situation in the Beaufort Sea (Dunton and 

Schell 1987).  

 Clearly, spatial differences in the availability of basal resources (e.g. 

phytoplankton, terrestrial carbon) among different arctic areas can give rise to differences 

in the feeding behaviour of consumers (Dunton et al. 2006; Iken et al. 2010), the 

community composition with regards to biomass at a given trophic level (Iken et al. 
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2010) and the energy channel that ultimately contributes to the food web as a whole 

(Chapter 3, Dunton et al. 2012). Such spatial differences are important because they 

could provide insight into the relative strength of the stabilizing effects that arise from the 

food web structures identified in this dissertation. For example, how does the importance 

of spatial and temporal coupling vary among arctic locations and between arctic and 

southerly latitudes? Further, there is a need to explore how much removal of resource 

heterogeneity and/or resource coupling by consumers will have a negative effect on 

persistence? 

 

2) What is the relative effect of resource coupling and individual specialization, within 

and among predator populations, on food web stability?  

 There is a need to consolidate the views that both resource coupling by generalist 

consumers (Rooney et al. 2006) and populations composed of individual specialists 

(Bolnick et al. 2011) increase food web persistence. Investigating their relative 

occurrence in food webs is a good place to begin. For example, based on results from the 

present dissertation (Chapter 4) and previous work (Rosenblatt and Heithaus 2011), a 

population can be composed of both individual specialists and individual generalists. 

Further, 'couplers' (i.e. species that feed as generalists on multiple resources in space) and 

'non-couplers' (i.e. species that feed as specialists or on only resource channel) can both 

exist in the same food web (Chapter 3, Matich et al. 2011). Prudent questions to ask are, 

within a given food web, how many consumers act as couplers and how many consumer 

populations exhibit IS? How many consumers need to act as resource couplers (sensu 

Rooney et al. 2006) in a given food web to elicit a stabilizing response? How many 
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populations within a food web need to be composed of individual specialists to 

effectively increase interactions and decrease interaction strength to elicit a stabilizing 

response (sensu Bolnick et al. 2011)? What is the relative importance of resource 

coupling vs IS on food web stability?   

 Based on results from Cumberland Sound, 57%  of consumers sampled for 

Chapter 3 coupled phytoplankton and macroalgae resources in space  (i.e. % reliance on 

pelagic carbon 10-90%) and 50% of consumers sampled for Chapter 6 coupled resources 

in time by switching their diet between summer and winter. How do these percentages 

compare with other arctic habitats and with temperate and tropical food webs? Answers 

to these questions could lend insight into the relative importance of the structures studied 

in this dissertation (resource coupling in space and time and IS) for food web persistence.  
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