7 research outputs found

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Chapter Two: Durrell as Research Leader

    No full text

    Metformin in women with type 2 diabetes in pregnancy (MiTy): a multicentre, international, randomised, placebo-controlled trial

    No full text
    Background: Although metformin is increasingly being used in women with type 2 diabetes during pregnancy, little data exist on the benefits and harms of metformin use on pregnancy outcomes in these women. We aimed to investigate the effects of the addition of metformin to a standard regimen of insulin on neonatal morbidity and mortality in pregnant women with type 2 diabetes. Methods: In this prospective, multicentre, international, randomised, parallel, double-masked, placebo-controlled trial, women with type 2 diabetes during pregnancy were randomly assigned from 25 centres in Canada and four in Australia to receive either metformin 1000 mg twice daily or placebo, added to insulin. Randomisation was done via a web-based computerised randomisation service and stratified by centre and pre-pregnancy BMI (<30 kg/m2 or ≥30 kg/m2) in a ratio of 1:1 using random block sizes of 4 and 6. Women were eligible if they had type 2 diabetes, were on insulin, had a singleton viable pregnancy, and were between 6 and 22 weeks plus 6 days' gestation. Participants were asked to check their fasting blood glucose level before the first meal of the day, before the last meal of the day, and 2 h after each meal. Insulin doses were adjusted aiming for identical glucose targets (fasting glucose <5·3 mmol/L [95 mg/dL], 2-h postprandial glucose <6·7 mmol/L [120 mg/dL]). Study visits were done monthly and patients were seen every 1–4 weeks as was needed for standard clinical care. At study visits blood pressure and bodyweight were measured; patients were asked about tolerance to their pills, any hospitalisations, insulin doses, and severe hypoglycaemia events; and glucometer readings were downloaded to the central coordinating centre. Participants, caregivers, and outcome assessors were masked to the intervention. The primary outcome was a composite of fetal and neonatal outcomes, for which we calculated the relative risk and 95% CI between groups, stratifying by site and BMI using a log-binomial regression model with an intention-to-treat analysis. Secondary outcomes included several relevant maternal and neonatal outcomes. The trial was registered with ClinicalTrials.gov, NCT01353391. Findings: Between May 25, 2011, and Oct 11, 2018, we randomly assigned 502 women, 253 (50%) to metformin and 249 (50%) to placebo. Complete data were available for 233 (92%) participants in the metformin group and 240 (96%) in the placebo group for the primary outcome. We found no significant difference in the primary composite neonatal outcome between the two groups (40% vs 40%; p=0·86; relative risk [RR] 1·02 [0·83 to 1·26]). Compared with women in the placebo group, metformin-treated women achieved better glycaemic control (HbA1c at 34 weeks' gestation 41·0 mmol/mol [SD 8·5] vs 43·2 mmol/mol [–10]; 5·90% vs 6·10%; p=0·015; mean glucose 6·05 [0·93] vs 6·27 [0·90]; difference −0·2 [–0·4 to 0·0]), required less insulin (1·1 units per kg per day vs 1·5 units per kg per day; difference −0·4 [95% CI −0·5 to −0·2]; p<0·0001), gained less weight (7·2 kg vs 9·0 kg; difference −1·8 [–2·7 to −0·9]; p<0·0001) and had fewer caesarean births (125 [53%] of 234 in the metformin group vs 148 [63%] of 236 in the placebo group; relative risk [RR] 0·85 [95% CI 0·73 to 0·99]; p=0·031). We found no significant difference between the groups in hypertensive disorders (55 [23%] in the metformin group vs 56 [23%] in the placebo group; p=0·93; RR 0·99 [0·72 to 1·35]). Compared with those in the placebo group, metformin-exposed infants weighed less (mean birthweight 3156 g [SD 742] vs 3375 g [742]; difference −218 [–353 to −82]; p=0·002), fewer were above the 97th centile for birthweight (20 [9%] in the metformin group vs 34 [15%] in the placebo group; RR 0·58 [0·34 to 0·97]; p=0·041), fewer weighed 4000 g or more at birth (28 [12%] in the metformin group vs 44 [19%] in the placebo group; RR 0·65 [0·43 to 0·99]; p=0·046), and metformin-exposed infants had reduced adiposity measures (mean sum of skinfolds 16·0 mm [SD 5·0] vs 17·4 [6·2] mm; difference −1·41 [–2·6 to −0·2]; p=0·024; mean neonatal fat mass 13·2 [SD 6·2] vs 14·6 [5·0]; p=0·017). 30 (13%) infants in the metformin group and 15 (7%) in the placebo group were small for gestational age (RR 1·96 [1·10 to 3·64]; p=0·026). We found no significant difference in the cord c-peptide between groups (673 pmol/L [435] in the metformin group vs 758 pmol/L [595] in the placebo group; p=0·10; ratio of means 0·88 [0·72 to 1·02]). The most common adverse event reported was gastrointestinal (38 events in the metformin group and 38 events in the placebo group). Interpretation: We found several maternal glycaemic and neonatal adiposity benefits in the metformin group. Along with reduced maternal weight gain and insulin dosage and improved glycaemic control, the lower adiposity and infant size measurements resulted in fewer large infants but a higher proportion of small-for-gestational-age infants. Understanding the implications of these effects on infants will be important to properly advise patients who are contemplating the use of metformin during pregnancy.The trial was funded by the Canadian Institutes of Health Research, the Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada, and the Department of Medicine, University of Toronto, Toronto, ON, Canada

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research

    Health-status outcomes with invasive or conservative care in coronary disease

    No full text
    BACKGROUND In the ISCHEMIA trial, an invasive strategy with angiographic assessment and revascularization did not reduce clinical events among patients with stable ischemic heart disease and moderate or severe ischemia. A secondary objective of the trial was to assess angina-related health status among these patients. METHODS We assessed angina-related symptoms, function, and quality of life with the Seattle Angina Questionnaire (SAQ) at randomization, at months 1.5, 3, and 6, and every 6 months thereafter in participants who had been randomly assigned to an invasive treatment strategy (2295 participants) or a conservative strategy (2322). Mixed-effects cumulative probability models within a Bayesian framework were used to estimate differences between the treatment groups. The primary outcome of this health-status analysis was the SAQ summary score (scores range from 0 to 100, with higher scores indicating better health status). All analyses were performed in the overall population and according to baseline angina frequency. RESULTS At baseline, 35% of patients reported having no angina in the previous month. SAQ summary scores increased in both treatment groups, with increases at 3, 12, and 36 months that were 4.1 points (95% credible interval, 3.2 to 5.0), 4.2 points (95% credible interval, 3.3 to 5.1), and 2.9 points (95% credible interval, 2.2 to 3.7) higher with the invasive strategy than with the conservative strategy. Differences were larger among participants who had more frequent angina at baseline (8.5 vs. 0.1 points at 3 months and 5.3 vs. 1.2 points at 36 months among participants with daily or weekly angina as compared with no angina). CONCLUSIONS In the overall trial population with moderate or severe ischemia, which included 35% of participants without angina at baseline, patients randomly assigned to the invasive strategy had greater improvement in angina-related health status than those assigned to the conservative strategy. The modest mean differences favoring the invasive strategy in the overall group reflected minimal differences among asymptomatic patients and larger differences among patients who had had angina at baseline

    Initial invasive or conservative strategy for stable coronary disease

    No full text
    BACKGROUND Among patients with stable coronary disease and moderate or severe ischemia, whether clinical outcomes are better in those who receive an invasive intervention plus medical therapy than in those who receive medical therapy alone is uncertain. METHODS We randomly assigned 5179 patients with moderate or severe ischemia to an initial invasive strategy (angiography and revascularization when feasible) and medical therapy or to an initial conservative strategy of medical therapy alone and angiography if medical therapy failed. The primary outcome was a composite of death from cardiovascular causes, myocardial infarction, or hospitalization for unstable angina, heart failure, or resuscitated cardiac arrest. A key secondary outcome was death from cardiovascular causes or myocardial infarction. RESULTS Over a median of 3.2 years, 318 primary outcome events occurred in the invasive-strategy group and 352 occurred in the conservative-strategy group. At 6 months, the cumulative event rate was 5.3% in the invasive-strategy group and 3.4% in the conservative-strategy group (difference, 1.9 percentage points; 95% confidence interval [CI], 0.8 to 3.0); at 5 years, the cumulative event rate was 16.4% and 18.2%, respectively (difference, 121.8 percentage points; 95% CI, 124.7 to 1.0). Results were similar with respect to the key secondary outcome. The incidence of the primary outcome was sensitive to the definition of myocardial infarction; a secondary analysis yielded more procedural myocardial infarctions of uncertain clinical importance. There were 145 deaths in the invasive-strategy group and 144 deaths in the conservative-strategy group (hazard ratio, 1.05; 95% CI, 0.83 to 1.32). CONCLUSIONS Among patients with stable coronary disease and moderate or severe ischemia, we did not find evidence that an initial invasive strategy, as compared with an initial conservative strategy, reduced the risk of ischemic cardiovascular events or death from any cause over a median of 3.2 years. The trial findings were sensitive to the definition of myocardial infarction that was used
    corecore