22 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola.

    No full text
    International audienceThe pea aphid genome includes 66 genes contributing to amino acid biosynthesis and 93 genes to amino acid degradation. In several respects, the pea aphid gene inventory complements that of its symbiotic bacterium, Buchnera aphidicola (Buchnera APS). Unlike other insects with completely sequenced genomes, the pea aphid lacks the capacity to synthesize arginine, which is produced by Buchnera APS. However, consistent with other insects, it has genes coding for individual reactions in essential amino acid biosynthesis, including threonine dehydratase and branched-chain amino acid aminotransferase, which are not coded in the Buchnera APS genome. Overall the genome data suggest that the biosynthesis of certain essential amino acids is shared between the pea aphid and Buchnera APS, providing the opportunity for precise aphid control over Buchnera metabolism

    Differential Gene Expression at the Maternal-Fetal Interface in Preeclampsia Is Influenced by Gestational Age

    Get PDF
    Genome-wide transcription data of utero-placental tissue has been used to identify altered gene expression associated with preeclampsia (PE). As many women with PE deliver preterm, there is often a difference in gestational age between PE women and healthy pregnant controls. This may pose a potential bias since gestational age has been shown to dramatically influence gene expression in utero-placental tissue. By pooling data from three genome-wide transcription studies of the maternal-fetal interface, we have evaluated the relative effect of gestational age and PE on gene expression. A total of 18,180 transcripts were evaluated in 49 PE cases and 105 controls, with gestational age ranging from week 14 to 42. A total of 22 transcripts were associated with PE, whereas 92 transcripts with gestational age (nominal P value <1.51*10-6, Bonferroni adjusted P value <0.05). Our results indicate that gestational age has a great influence on gene expression both in normal and PE-complicated pregnancies. This effect might introduce serious bias in data analyses and needs to be carefully assessed in future genome-wide transcription studies. © 2013 Lian et al
    corecore