1,022 research outputs found

    Gravity, Topography, and Melt Generation Rates From Simple 3-D Models of Mantle Convection

    Get PDF
    Convection in fluid layers at high Rayleigh number (Ra 106\sim 10^6) have a spoke pattern planform. Instabilities in the bottom thermal boundary layer develop into hot rising sheets of fluid, with a component of radial flow towards a central upwelling plume. The sheets form the "spokes" of the pattern, and the plumes the "hubs". Such a pattern of flow is expected to occur beneath plate interiors on Earth, but it remains a challenge to use observations to place constraints on the convective planform of the mantle. Here we present predictions of key surface observables (gravity, topography, and rates of melt generation) from simple 3D numerical models of convection in a fluid layer. These models demonstrate that gravity and topography have only limited sensitivity to the spokes, and mostly reflect the hubs (the rising and sinking plumes). By contrast, patterns of melt generation are more sensitive to short wavelength features in the flow. There is the potential to have melt generation along the spokes, but at a rate which is relatively small compared with that at the hubs. Such melting of spokes can only occur when the lithosphere is sufficiently thin (80\lesssim 80 km) and mantle water contents are sufficiently high (100\gtrsim 100 ppm). The distribution of volcanism across the Middle East, Arabia and Africa north of equator suggests that it results from such spoke pattern convection.Leverhulme Trus

    Enhanced visual statistical learning in adults with autism.

    Get PDF
    OBJECTIVE: Individuals with autism spectrum disorder (ASD) are often characterized as having social engagement and language deficiencies, but a sparing of visuospatial processing and short-term memory (STM), with some evidence of supranormal levels of performance in these domains. The present study expanded on this evidence by investigating the observational learning of visuospatial concepts from patterns of covariation across multiple exemplars. METHOD: Child and adult participants with ASD, and age-matched control participants, viewed multishape arrays composed from a random combination of pairs of shapes that were each positioned in a fixed spatial arrangement. RESULTS: After this passive exposure phase, a posttest revealed that all participant groups could discriminate pairs of shapes with high covariation from randomly paired shapes with low covariation. Moreover, learning these shape-pairs with high covariation was superior in adults with ASD than in age-matched controls, whereas performance in children with ASD was no different than controls. CONCLUSIONS: These results extend previous observations of visuospatial enhancement in ASD into the domain of learning, and suggest that enhanced visual statistical learning may have arisen from a sustained bias to attend to local details in complex arrays of visual features

    Wavelet-Based Detection of Outliers in Poisson INAR(1) Time Series

    Get PDF
    The presence of outliers or discrepant observations has a negative impact in time series modelling. This paper considers the problem of detecting outliers, additive or innovational, single, multiple or in patches, in count time series modelled by first-order Poisson integer-valued autoregressive, PoINAR(1), models. To address this problem, two wavelet-based approaches that allow the identification of the time points of outlier occurrence are proposed. The effectiveness of the proposed methods is illustrated with synthetic as well as with an observed dataset

    Epidemiology of Exertional Rhabdomyolysis Susceptibility in Standardbred Horses Reveals Associated Risk Factors and Underlying Enhanced Performance

    Get PDF
    BACKGROUND: Exertional rhabdomyolysis syndrome is recognised in many athletic horse breeds and in recent years specific forms of the syndrome have been identified. However, although Standardbred horses are used worldwide for racing, there is a paucity of information about the epidemiological and performance-related aspects of the syndrome in this breed. The objectives of this study therefore were to determine the incidence, risk factors and performance effects of exertional rhabdomyolysis syndrome in Standardbred trotters and to compare the epidemiology and genetics of the syndrome with that in other breeds. METHODOLOGY/PRINCIPAL FINDINGS: A questionnaire-based case-control study (with analysis of online race records) was conducted following identification of horses that were determined susceptible to exertional rhabdomyolysis (based on serum biochemistry) from a total of 683 horses in 22 yards. Thirty six exertional rhabdomyolysis-susceptible horses were subsequently genotyped for the skeletal muscle glycogen synthase (GYS1) mutation responsible for type 1 polysaccharide storage myopathy. A total of 44 susceptible horses was reported, resulting in an annual incidence of 6.4 (95% CI 4.6-8.2%) per 100 horses. Female horses were at significantly greater risk than males (odds ratio 7.1; 95% CI 2.1-23.4; p = 0.001) and nervous horses were at a greater risk than horses with calm or average temperaments (odds ratio 7.9; 95% CI 2.3-27.0; p = 0.001). Rhabdomyolysis-susceptible cases performed better from standstill starts (p = 0.04) than controls and had a higher percentage of wins (p = 0.006). All exertional rhabdomyolysis-susceptible horses tested were negative for the R309H GYS1 mutation. CONCLUSIONS/SIGNIFICANCE: Exertional rhabdomyolysis syndrome in Standardbred horses has a similar incidence and risk factors to the syndrome in Thoroughbred horses. If the disorder has a genetic basis in Standardbreds, improved performance in susceptible animals may be responsible for maintenance of the disorder in the population

    The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to <it>Plasmodium falciparum </it>(1994–2006) and <it>Plasmodium vivax </it>(1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed.</p> <p>Methods</p> <p>Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index.</p> <p>Results</p> <p>Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for <it>P. vivax </it>than <it>P. falciparum</it>. While the incidence of <it>P. falciparum </it>has been declining in recent years across geographic regions, <it>P. vivax </it>incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions.</p> <p>Conclusion</p> <p>Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in human populations, impact of interventions, detection of heterogeneity and generation of hypotheses.</p

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Patient complexity in quality comparisons for glycemic control: An observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patient complexity is not incorporated into quality of care comparisons for glycemic control. We developed a method to adjust hemoglobin A1c levels for patient characteristics that reflect complexity, and examined the effect of using adjusted A1c values on quality comparisons.</p> <p>Methods</p> <p>This cross-sectional observational study used 1999 national VA (US Department of Veterans Affairs) pharmacy, inpatient and outpatient utilization, and laboratory data on diabetic veterans. We adjusted individual A1c levels for available domains of complexity: age, social support (marital status), comorbid illnesses, and severity of disease (insulin use). We used adjusted A1c values to generate VA medical center level performance measures, and compared medical center ranks using adjusted versus unadjusted A1c levels across several thresholds of A1c (8.0%, 8.5%, 9.0%, and 9.5%).</p> <p>Results</p> <p>The adjustment model had R<sup>2 </sup>= 8.3% with stable parameter estimates on thirty random 50% resamples. Adjustment for patient complexity resulted in the greatest rank differences in the best and worst performing deciles, with similar patterns across all tested thresholds.</p> <p>Conclusion</p> <p>Adjustment for complexity resulted in large differences in identified best and worst performers at all tested thresholds. Current performance measures of glycemic control may not be reliably identifying quality problems, and tying reimbursements to such measures may compromise the care of complex patients.</p
    corecore