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Abstract The presence of outliers or discrepant observations has a negative impact
in time series modelling. This paper considers the problem of detecting outliers,
additive or innovational, single, multiple or in patches, in count time series mod-
elled by first-order Poisson integer-valued autoregressive, PoINAR(1), models. To
address this problem, two wavelet-based approaches that allow the identification of
the time points of outlier occurrence are proposed. The effectiveness of the proposed
methods is illustrated with synthetic as well as with an observed dataset.

1 Introduction

Time series, as any other data, may contain outliers which are observations that look
discordant from most of the observations in the dataset. Neglecting the presence of
outliers in a time series hinders statistical inference, leading to model misspecifica-
tion and biased parameter estimation. Since the seminal work of Fox [7] two major
approaches for dealing with outliers in time series, may be distinguished. One ap-
proach advocates the use of robust estimators to reduce the effect of the outlying
observations. However, this approach often leads to ignoring observations hence
eventually masking the presence of important underlying phenomena, precluding
risk analysis. Alternatively, several methodologies for detecting and estimating out-
liers and other intervention effects have been establishedfor ARMA models. The
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emphasis has been on iterative procedures and likelihood based statistics, see for
instance Chang et al. [5], Chen and Liu [6] and Tsay [17]. Alsoseveral tailored
procedures have been proposed to some nonlinear time seriesmodels. However,
the problem of detection and estimation of outliers in time series of counts has re-
ceived less attention in the literature. Count time series occur in many areas such as
telecommunications, actuarial science, epidemiology, hydrology and environmental
studies where the detection of outliers may be invaluable inrisk assessment.

One of the most popular classes of models for time series of counts is the class of
INAR models proposed by Al-Osh and Alzaid [1] and McKenzie [11], extensively
studied in the literature and applied to many real-world problems because of its
easiness of interpretation. These models are apparently autoregressive models in
which the usual multiplication has been replaced by a randomoperation, called
thinning operation (for details see Scotto et al. [13]) and the innovations are discrete-
valued random variables. Barczy et al. [2, 3] proposed Conditional Least Squares
estimation of the INAR(1) model parameters contaminated with outliers additive
and innovational, assuming that the time points of the outliers occurrence are known,
but their sizes are unknown. Recently, Silva and Pereira [15] suggested a Bayesian
approach in order to detect additive outliers in PoINAR(1) models.

In this work, procedures to identify the times of outlier occurrence in PoINAR(1)
time series using wavelets are proposed. Wavelets are basisfunctions that combine
properties such as localization in time and scale, orthonormality, different degrees of
smoothness, compact support and fast implementation, for details see Percival and
Walden [12]. In particular, Discrete Wavelet Transform (DWT), which is a powerful
tool for a time-scale multi-resolution analysis, is applied. DWT can be considered as
filters of different cut-off frequencies used to analyse a signal at different scales. In a
first approach, similar to that of Grané and Veiga [8], the so called detail coefficients
derived from DWT, using the Haar wavelet, are compared with a threshold. In a
second approach, the parametric resampling method of Tsay [18] is used in order to
obtain the empirical distribution of these detail coefficients.

The remainder of this work is organized as follows. Section 2presents the first-
order Poisson Integer-valued AutoRegressive model contaminated with additive and
innovational outliers. A brief description of wavelets andDWT is given in Section
3. The proposed wavelet-based procedures to detect time of outlier occurrence are
explained in Section 4. The proposed procedures are illustrated and compared with
synthetic data in Section 5. Furthermore, the methods are also applied on an ob-
served dataset. Finally, Section 6 concludes the paper.

2 Poisson INAR(1) model contaminated with outliers

Motivated by the need of modelling correlated series of counts, several models for
integer-valued time series were proposed in the literature. One of them is the INteger
AutoRegressive model proposed by Al-Osh and Alzaid [1] and McKenzie [11]. This
model is based on the binomial thinning operation, proposedby Steutel and Van
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Harn [16], which is defined on a non negative integer-valued random variableX by

α ◦X =
X

∑
k=1

Yk, whereα ∈ [0,1] and{Yk}, k = 1, . . . ,X , is a sequence of independent

and identically distributed (i.i.d.) Bernoulli random variables, independent ofX ,
with P(Yk = 1) = 1−P(Yk = 0) = α. This sequence is called the counting series
of α ◦X . Note that,α ◦X |X ∼ Bi(X ,α). For an account of the properties of the
thinning operation see Silva and Oliveira [14].

Let {Xt} be a discrete time, positive integer-valued stochastic process. It is said
to be a PoINAR(1) process if it satisfies the following equation,

Xt = α ◦Xt−1+ et , (1)

whereet ∼ Poisson(λ ), is the so called arrival process, 0< α < 1, and for eacht,
all counting series ofα ◦Xt−1 are mutually independent and independent of{et}.
Under these conditions, the process is strictly stationaryandXt ∼ Poisson( λ

1−α ) if

X0 ∼ Poisson( λ
1−α ).

A time series is affected by an additive outlier (AO) if an external error or exoge-
nous change occurs on a certain time point, affecting only this observation and not
entering the dynamics of the process. Formally, a contaminated PoINAR(1) with
I ∈ N additive outliers with magnitudeωi ∈ N at time pointssi ∈ N, i = 1, . . . , I can
be defined as follows

Yt = Xt +
I

∑
i=1

δi,siωi,

whereXt is a PoINAR(1) model satisfying (1) andδk,m = 1, if k = m; δk,m = 0, if
k 6= m, is an indicator function.

On the other hand, an innovational outlier (IO) can be considered as an internal
change or endogenous effect on the noise process, affectingall subsequent obser-
vations. Thus, the observed time seriesY1, . . . ,Yn is a PoINAR(1) process contami-
nated withI ∈ N innovational outliers with sizeωi at time pointssi, i = 1, . . . , I if it
satisfies the following equation

Yt = α ◦Yt−1+ηt ,

with ηt = et +
I

∑
i=1

δi,siωi, whereet ∼ Poisson(λ ) andI,si,ωi andδk,m are defined as

before.
Note that in both cases, the underlying outlier free processXt is unobserved.

3 Brief description of discrete wavelet transform

A wavelet is a function that can be considered as a small wave which grows and
decays in a limited time period, for details see Percival andWalden [12]. Simi-



4 Isabel Silva and Maria Eduarda Silva

larly to Fourier analysis that uses sinusoidal functions tofind the frequency com-
ponents contained in a signal, wavelet analysis uses shifted and scaled versions of
a so called wavelet mother to provide the time localization of each spectral com-
ponent. Formally, a (mother) wavelet is any real-valued function ψ(·) defined onR

satisfying
∫ ∞
−∞ ψ(u) du = 0,

∫ ∞
−∞ ψ2(u) du = 1, and 0<

∫ ∞
0

|ΨΨΨ( f )|2
f d f < ∞, where

ΨΨΨ( f ) =
∫ ∞
−∞ ψ(u) e−i2π f u du is the Fourier transform ofψ(·).

Following Percival and Walden [12], letX = {Xt , t = 0, . . . ,N −1} be a time se-
ries (or signal), withN = 2J , J ∈N. The DWT coefficientsW = {Wn,n = 0, . . . ,N−
1} are defined by

W = W X ⇔ [W1 . . .WJ VJ ]
T = [W1 . . .WJ VJ ]

T X,

whereW is aN ×N orthonormal matrix of dilations and translations of the mother

waveletψ(·), defined as
1√
d

ψ
(

u− t
d

)

with dilationd and translationt parameters

taking dyadic values, i.e.,d = 2j andt = k2j, for j,k ∈Z. Note that, forj = 1, . . . ,J,
W j is a column vector withN/2j elements that contains all the DWT coefficients for
scaleτ j = 2j−1, VJ contains the scaling coefficientsWN−1, associated with average
on scaledJ = 2J , W j has dimensionN/2j ×N andVJ is 1×N.

The wavelet coefficients of white noise or Gaussian data are themselves white
noise or Gaussian random variables, respectively, see Percival and Walden [12].
Furthermore, as referred by Bilen and Huzurbazar [4] and Percival and Walden [12],
wavelet coefficients inW j are approximately uncorrelated even when the data is
highly correlated and they allow the reconstruction of the time series. The synthesis
of X (inverse DWT) is given byX = W T W = ∑J

j=1W T
j W j +V T

J VJ = ∑J
j=1D j +

AJ , whereD j is called thejth level wavelet detail andAJ has all its elements equal
to the sample mean of the time series. For 1≤ j ≤ J−1, the jth level wavelet smooth
is A j = ∑J

k= j+1Dk +AJ , and can be considered as an approximation (smoother
version) ofX.

In practice, the discrete wavelet transform (DWT) matrixW is computed through
a so called pyramid algorithm introduced by Mallat [9] that uses linear filtering
and downsampling operations. More specifically, for a even width L, consider a
wavelet filter{hl : l = 0, . . . ,L− 1}, which is a high-pass filter, and a scaling fil-
ter gl = (−1)l+1hL−1−l , that is a low-pass filter. In the first step of the pyramidal
algorithm, two sets of coefficients are produced by the convolution of X with the
low-pass filter{gl} (producing the first level approximation coefficientscA1) and
with the high-pass filter{hl} (deriving the first level detail coefficientscD1), and
then a downsample is performed (retain every other filtered value). The next step
divides the first level approximation coefficients in two sequences using the same
procedure, replacingX by cA1 and computingcA2 andcD2. Therefore, at levelj,
the decomposition ofX has the following structure[cA j,cD j,cD j−1, . . . ,cD1].

The detail coefficients capture certain features of the timeseries, such as sudden
changes, peaks, or spikes, presenting large values in the presence of these singu-
larities, and therefore they can be used to detect outliers.In general, the first level
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of decomposition is enough to analyse time series contaminated with outliers Bilen
and Huzurbazar [4] and Grané and Veiga [8].

There are many mother wavelets. In this work, the Haar wavelet (among the many
mother wavelets) is used. Since it can be considered as a square wave defined by

ψ(t) =







−1/
√

2, −1≤ t ≤ 0
1/
√

2, 0< t ≤ 1
0, otherwise.

the Haar wavelet is more suitable for count data. In this case, low-pass filters cor-
respond to moving averages of the observations and high-pass filters correspond to
moving differences of the observations.

4 Procedures to detect the time of outliers occurrence

In this section, two wavelet-based methods for detecting the time of occurrence of
outliers in PoINAR(1) processes are described. The procedures can be summarised
in the following steps:

Step 1 Given an observed time series of counts,Y = {Yt , t = 0, . . . ,N}, fit a
PoINAR(1) model and compute the resulting Pearson residuals3 Z = {ẑt , t =

1, . . . ,N −1}, given byẑt =
Yt − (α̂Yt−1+ λ̂ )

√

α̂(1− α̂)Yt−1+ λ̂
.

Step 2 The DWT is applied to the Pearson residuals to obtain the first level detail
coefficients,cD1 = (d1,d2, . . . ,dN/2).

Step 3a Threshold approach:

(i) Set the thresholdka
1 (discussed in Subsection 4.1).

(ii) The set of (ordered) indices,S = {s1, . . . ,sI}, containing the positions of
the detail coefficients which are above the thresholdka

1 is obtained. As in
Grańe and Veiga [8], the problem of masking4 is avoided by searching the
outliers recursively. This means that for each outlier detected, Z is recon-
structed applying the inverse discrete wavelet transform (IDWT) to modified
detail coefficients where the largest (in absolute value) detail coefficient above
the threshold is set to zero. The procedure ends when no more outliers are de-
tected.

Step 3b Parametric resampling approach:

(i) Compute the acceptance envelope (discussed in Subsection 4.2).

3 Zt =
Yt−E[Yt |Yt−1]√

Var(Yt |Yt−1)
4 Masking occurs when one outlier prevents others from being detected.
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(ii) The set of (ordered) indices,S = {s1, . . . ,sI}, containing the positions of
the detail coefficients which are outside of the acceptance envelope is calcu-
lated.

Step 4 The exact position of the outlier in the residual series is obtained as in
Grańe and Veiga [8]: lets be a generic element ofS, compute the sample mean

of Z without the observations 2s and 2s−1, given by z̄N−2 =
1

N −2 ∑
i 6=2s,2s−1

ẑi;

the time of the outlier occurrence in the residual series is 2s if |ẑ2s − z̄N−2| >
|ẑ2s−1− z̄N−2|, or equal to 2s−1 otherwise.

As noted by Bilen and Huzurbazar [4] and Grané and Veiga [8], the first level co-
efficients detect only the beginning of an outliers patch andtherefore, when search-
ing for patches of outliers it is necessary to use the second level detail coefficients,
cD2. Thus, inStep 3a there are two thresholdska1

1 andka2
2 , corresponding to the

first and second levels of detail coefficients, respectively. Similarly, there are two
acceptance envelopes, one forcD1 and one forcD2, in Step 3b.

4.1 Setting the threshold

In the non-Gaussian context of this work, there are no results available for the distri-
bution of the detail coefficients. Thus Monte Carlo simulations are used to obtain the
empirical distribution of the maximum of the detail coefficients (in absolute value)
for the Pearson residuals of PoINAR(1) models. Then a threshold is computed as
follows. For each(α,λ ) in the set{(α,λ ) : α = (2k+1)×10−1,k = 0, . . . ,4;λ =
2k+1,k = 0, . . . ,14}, 20000 replications of the corresponding PoINAR(1) process
are generated for each sample sizeN = 2J +1, for J = 7, . . . ,10. The model is fitted,
the Pearson residuals, ˆzi, for i = 1, . . . ,N − 1, are computed and the maximum of
the first and second level detail coefficients are obtained. The thresholdska1

1 andka2
2

are set as the 100(1−a)th percentiles of the corresponding empirical distributions,
for a= a1 or a= a2. The results5 indicate that the thresholds vary not only with the
sample sizeN but also with the specific combination of the parametersα andλ .
Therefore, adopting a conservative strategy, for each sample sizeN the thresholds
are set to the minimum obtained for all the combinations of parameters in each level
of decomposition. The obtained thresholds are shown in Table 1.

4.2 Computing the acceptance envelope

Tsay [18] proposed to obtain the empirical distribution of achosen functional using
bootstrap samples generated from a fitted model, and then compare the observed

5 Available from the authors.
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Table 1 Empirical threshold values corresponding to 90th and 95th percentiles of the maximum of
the detail coefficients (first and second level), in absolute value, for PoINAR(1) Pearson residuals.

N 128 256 512 1024

k0.05
1 3.469 3.694 3.886 4.118

k0.1
1 3.182 3.450 3.657 3.840

k0.05
2 3.157 3.347 3.518 3.691

k0.1
2 2.936 3.138 3.320 3.504

value for the series with this distribution. For this purpose, an acceptance envelope
is obtained from the 100(1− a/2)th and 100a/2th percentiles of this empirical
distribution. If the fitted model is adequate, the functional of interest of the original
data should be within the envelope. In this work, the functionals of interest are
the first and second level detail coefficients of the Pearson residuals of PoINAR(1)
model. Thus, for several sample sizesN = 2J +1,J = 7,8,9, and parameter values
{(α,λ ) : α ∈ {0.1,0.5,0.9};λ ∈ {1,5,9,13}}, 20000 realizations of PoINAR(1)
process are generated and the corresponding Pearson residuals are estimated. For
each series of Pearson residuals, the DWT is applied to obtainthe first and second
level detail coefficients,cD1 andcD2, and the acceptance envelopes are constructed
from the 0.01th and 99.99th percentiles6 of the empirical distribution ofcD1 and
cD2, respectively. Once again, the results7 show that the acceptance envelopes vary
not only with the sample sizeN but also with the combination of the parameter
values(α,λ ). Therefore, assuming a conservative strategy, for each sample size,
an acceptance envelope with the minimum amplitude is chosen. The acceptance
envelopes are available from the authors upon request.

5 Simulation study and illustration

This section presents the results of a simulation study designed to evaluate and
compare the performance of the procedures described above (implemented in Mat-
lab [10]). For these purposes, the percentage of correct detections and the average
number of false outliers detected in 1000 repetitions are computed. In each repe-
tition, a realization of a PoINAR(1) process with parameters in the set{(α,λ ) :
α ∈ {0.1,0.5,0.8};λ ∈ {1,3,5}} is contaminated with single (1) or multiple (3)
outliers either additive or innovational, randomly placed, with integer-valued mag-
nitudeω = ⌈5σX⌉,⌈10σX⌉, where⌈x⌉ is the smallest integer greater than or equal
to x. The Pearson residual series are obtained and the proceduresdescribed in Sec-
tion 4 are applied. Several sample sizes are considered,N = 128,256,512. Some

6 In the performed simulation study, the detail coefficients present a large variability. Therefore,
as a compromise between correct and false detection of outliers, it is found that a reasonable
acceptance envelope is constructed from the 0.01th and 99.99th extreme percentiles.
7 Available from the authors.
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of the results are shown in Tables 2 and 3 for the thresholdk0.05
1 and the accep-

tance envelope constructed from the 0.01th and 99.99th percentiles of the empirical
distribution ofcD1.

Table 2 Percentage of correct detections and average number of false outliers detected, in 1000
repetitions of PoINAR(1) models with sample sizesN+1 for some parameter values, contaminated
with 1 additive outlier or 1 innovational outlier, with magnitude⌈5σX⌉ and⌈10σX⌉.

1 Additive Oulier 1 Innovational Oulier

% Correct Average False % Correct Average False

(α ,λ ) N ω Thresh. Env. Thresh. Env. Thresh. Env. Thresh. Env.
(0.1, 1) 128 ⌈5σX⌉= 6 81.8 72.5 0.088 0.05 69.9 63.4 0.092 0.069

⌈10σX⌉= 11 98.2 97.8 0.07 0.05 99.7 98.8 0.094 0.061
256 ⌈5σX⌉= 6 64 81.8 0.114 0.128 67.4 63.6 0.168 0.147

⌈10σX⌉= 11 98.7 99.1 0.102 0.105 99.9 99 0.122 0.144
512 ⌈5σX⌉= 6 78.1 91.8 0.185 0.268 60.3 66.7 0.163 0.293

⌈10σX⌉= 11 100 100 0.166 0.239 100 100 0.18 0.284

(0.5, 3) 128 ⌈5σX⌉= 13 73 99 0.047 0.03 73.6 63.4 0.096 0.046
⌈10σX⌉= 25 100 99.9 0.002 0.013 99.9 100 0.077 0.049

256 ⌈5σX⌉= 13 64.7 99.6 0.064 0.059 67.4 84.2 0.098 0.086
⌈10σX⌉= 25 99.8 99.9 0.085 0.143 100 100 0.132 0.103

512 ⌈5σX⌉= 13 98.5 99.3 0.095 0.152 64.9 86.1 0.123 0.26
⌈10σX⌉= 25 99.7 100 0.158 0.087 100 100 0.113 0.225

(0.8, 5) 128 ⌈5σX⌉= 25 97.9 97.7 0.023 0.026 98.1 95.7 0.049 0.04
⌈10σX⌉= 50 100 100 0.51 0 100 100 0.053 0.028

256 ⌈5σX⌉= 25 91.5 94.4 0.391 0.404 97.2 96.1 0.071 0.064
⌈10σX⌉= 50 100 100 0 0 100 100 0.059 0.067

512 ⌈5σX⌉= 25 92.5 96.5 0.524 0.087 98.7 98.9 0.068 0.156
⌈10σX⌉= 50 100 100 0.001 0.004 100 100 0.077 0.12

For the case of contamination with 1 outlier (Table 2), the complete set of results
shows that the procedures are sensitive to the increasing ofthe magnitude of the
outlier (AO or IO) but none of the approaches presents betterperformance than the
other. The percentage of correct detection is similar for both types of outliers. When
the outlier magnitude is equal to⌈10σX⌉, for the threshold approach the minimum
percentage of correct detections is 98.2 % and 99.1 % for AO and IO cases, respec-
tively; while for the parametric resampling approach, the minimum values are 97.8
% for the AO case and 98.8 % for the IO case. The average number of false outlier
detection is slightly bigger for the AO cases, where the maximum average number
of false outliers detected is 0.794 for the threshold approach and 0.985 for the para-
metric resampling approach. In the IO cases, the values are 0.184 and 0.379 for the
first and second approaches, respectively.

In the case of contamination with 3 outliers, the results presented in Table 3 show
that the percentage of correct detections decreases marginally with respect to Table
2. The analysis of the complete set of results for multiple outliers shows that in gen-
eral for IO case the threshold approach seems preferable since it leads to a higher
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Table 3 Percentage of correct detections and average number of false outliers detected, in 1000
repetitions of PoINAR(1) models with sample sizesN+1 for some parameter values, contaminated
with 3 additive outlier or 3 innovational outlier, with magnitude⌈5σX⌉ and⌈10σX⌉.

3 Additive Ouliers 3 Innovational Ouliers

% Correct Average False % Correct Average False

(α ,λ ) N ω Thresh. Env. Thresh. Env. Thresh. Env. Thresh. Env.
(0.5, 1) 128 ⌈5σX⌉= 8 80.9 30.3 0.021 0.041 83.1 73.7 0.082 0.05

⌈10σ⌉= 15 100 99.9 0.009 0.002 99.8 99.9 0.039 0.02
256 ⌈5σX⌉= 8 79.9 77.4 0.032 0.052 77.8 78.6 0.124 0.146

⌈10σX⌉= 15 66.1 100.0 0.078 0.011 99.9 99.9 0.09 0.096
512 ⌈5σX⌉= 8 88.2 79.5 0.085 0.158 69.9 66.1 0.198 0.383

⌈10σX⌉= 15 99.9 99.9 0.031 0.055 99.6 100.0 0.171 0.282

(0.8, 3) 128 ⌈5σX⌉= 20 99.6 89.6 0.011 0.026 97.2 97.3 0.021 0.01
⌈10σX⌉= 39 100 100 0.011 0.006 100 100 0.011 0.003

256 ⌈5σX⌉= 20 90.0 90.5 0.165 0.199 99.3 98.6 0.05 0.056
⌈10σX⌉= 39 100 100 0.087 0.077 100 100 0.028 0.022

512 ⌈5σX⌉= 20 91.4 94.3 0.384 0.576 97.7 97.0 0.062 0.128
⌈10σX⌉= 39 100 100 0.833 0 100 100 0.063 0.083

(0.1, 5) 128 ⌈5σX⌉= 12 57.5 44.0 0.026 0.013 54.7 47.7 0.042 0.026
⌈10σX⌉= 24 99.6 99.5 0.034 0.021 99.8 99.8 0.027 0.012

256 ⌈5σX⌉= 12 54.2 50.7 0.039 0.043 51.2 51.9 0.057 0.054
⌈10σX⌉= 24 99.9 99.9 0.027 0.025 99.9 99.8 0.058 0.062

512 ⌈5σX⌉= 12 39.9 57.3 0.07 0.114 43.6 29.5 0.062 0.129
⌈10σX⌉= 24 99.8 99.9 0.028 0.098 99.9 99.8 0.057 0.112

percentage of correct detections while the mean number of false detections is com-
parable to the parametric approach. On the other hand, for AOcase the parametric
approach leads to a higher percentage of correct detectionsbut also to an increase
of 70% in the mean number of false detections.

Finally, to examine the performance of the procedures to detect patches of out-
liers, Table 4 presents the percentages of correct (complete) detections and partial
detections and the average number of false patches detected, in 1000 repetitions.
As before, in each repetition, the Pearson residuals seriesare obtained from a real-
ization of a PoINAR(1) model, for several samples sizes and combinations of pa-
rameter values. In each realization, a patch with 3 additiveoutliers, with magnitude
equal to⌈10σX⌉, is placed randomly. The threshold approach has been appliedwith
the 90th percentiles of the empirical distribution of the maximum of the absolute
value ofcD1 andcD2, respectivelyk0.1

1 andk0.1
2 (see Table 1). For each level of de-

composition, in the parametric resampling approach, the acceptance envelopes are
constructed from the 0.01th and 99.99th percentiles of the empirical distribution of
cD1 andcD2, respectively. The results indicates that the threshold approach presents
a better performance. However, the percentage of the partial detection obtained in
the parametric resampling approach indicates that the results can be improved by
tuning the acceptance envelope of the second level of decomposition of DWT.
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Table 4 Percentage of correct and partial detections and average number of false outliers detected,
in 1000 repetitions of PoINAR(1) models with sample sizesN+1 for some parameter values, with
a patch of 3 additive outliers, with magnitude⌈10σX⌉.

% Correct % Partial Average False

(α ,λ ) ω N Thresh. Env. Thresh. Env. Thresh. Env.
(0.8, 1) ⌈10σX⌉= 23 128 100 63.9 0 34.7 0.001 1

256 100 71.3 0 0 0 0.779
512 100 99.9 0 0.1 0.001 0.986

(0.1, 3) ⌈10σX⌉= 19 128 69.1 60.8 0.1 38.5 0.077 1
256 98.8 100 0 0 0.053 0.313
512 99.5 99.9 0 0.1 0.02 0.616

(0.5, 5) ⌈10σX⌉= 32 128 100.0 99.9 0 0 0.023 0.999
256 100.0 99.7 0 0 0.011 0.012
512 99.8 100 0 0 0.01 0.167

Note that, since the outliers (single, multiple or patch) are placed randomly, if
they appear in the first observation, both approaches have a poor performance. The
same happens when two outliers are placed in subsequent observations, since it can
be considered as a patch.

As a final illustration of the described procedures, consider the real dataset with
2418 observations concerning the number of different IP addresses (in periods of
2 minutes length) at the server of the Department of Statistics of the University of
Würzburg on November 29th, 2005, between 10 a.m. and 6 p.m., represented in
Figure 1 and studied by Silva and Pereira [15] and Weiß[19]. The values of sample
mean(x̄ = 1.32) and sample variance(σ̂2 = 1.39) and the analysis of the sam-
ple autocorrelation and partial autocorrelation functions, indicate that a PoINAR(1)
model can be fitted to this dataset. By applying both approaches to outlier occur-
rence time detection to this dataset, an outlier is detectedat t = 224 (corresponding
to S = {112}). Figure 2 represents the threshold and the acceptance envelope for
this illustration. The detection of the outlier att = 224 agrees with the results in
Weiß[19] and Silva and Pereira [15]. The former reference indicates as true value
X224= 1 while in the latter reference the authors use a Bayesian approach that de-
tects an outliers att = 224 with probability 0.99 and estimatesα̂ = 0.27, λ̂ = 0.89
andω = 7.

6 Final remarks

Parametric wavelet-based methods for the detection of outlier occurrences are
described. The procedures use the Haar DWT of the Pearson residuals of the

8 Since 241 is not a power of two, by default Matlab extends the signal by using symmetric-padding
(symmetric boundary value replication).
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Fig. 1 Cronogram of the IP
dataset.
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Fig. 2 Results of threshold approach (left panel) and parametric resampling approach (right panel)
on the IP dataset.

PoINAR(1) model. In a first approach, a threshold based on theempirical distri-
bution of the maximum of the (first and second levels) detail coefficients is used. In
a second approach, an acceptance envelope constructed fromthe empirical distribu-
tion of these detail coefficients is obtained through parametric resampling methods.
The procedures do not require previous knowledge on the number of outliers and
are adequate to detect one or multiple outliers, of different types, additive or innova-
tional and patches of additive outliers. However, an open issue is the discrimination
of the two types of outliers.

DWT can only be applied when the sample size of the time series is a power
of two. To overcome this limitation, the proposed approaches to outlier detection
can use the modified version of DWT, designated by Maximum Overlap DWT
(MODWT), introduced by Percival and Walden [12], since MODWT can be applied
for a time series of any length.

The performance of the proposed procedures is illustrated with synthetic and
real count data. The results show that the methods are efficient and reliable. As far
as it is known, this is the first work that treats patches of outliers in the counting
time series context. Improvements are still possible by calibrating the percentiles of
the empirical distributions used to detect the time of outlier occurrence, either in the
threshold approach or in the parametric resampling approach. Different applications
may need different significance levels.
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The procedures proposed can be applied in other contexts andcan also be ex-
tended to detect changes in the structure and dynamics of theprocesses.
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