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Abstract

Convection in fluid layers at high Rayleigh number (Ra ∼ 106) have a
spoke pattern planform. Instabilities in the bottom thermal boundary layer
develop into hot rising sheets of fluid, with a component of radial flow towards
a central upwelling plume. The sheets form the “spokes” of the pattern, and
the plumes the “hubs”. Such a pattern of flow is expected to occur beneath
plate interiors on Earth, but it remains a challenge to use observations to
place constraints on the convective planform of the mantle. Here we present
predictions of key surface observables (gravity, topography, and rates of melt
generation) from simple 3D numerical models of convection in a fluid layer.
These models demonstrate that gravity and topography have only limited
sensitivity to the spokes, and mostly reflect the hubs (the rising and sinking
plumes). By contrast, patterns of melt generation are more sensitive to short
wavelength features in the flow. There is the potential to have melt generation
along the spokes, but at a rate which is relatively small compared with that
at the hubs. Such melting of spokes can only occur when the lithosphere is
sufficiently thin (≲ 80 km) and mantle water contents are sufficiently high
(≳ 100 ppm). The distribution of volcanism across the Middle East, Arabia
and Africa north of equator suggests that it results from such spoke pattern
convection.

1 Introduction
What is the planform of mantle convection? The largest, and most obvious, plan-
form in the convection system is that associated with plate motions, which involves
horizontal scales as large as 10,000 km (e.g. the Pacific plate). However, it is also
clear that convection takes place at shorter horizontal scales. This scale of con-
vection manifests in hot-spot volcanism, and the swells and troughs in gravity and
topography observed at wavelengths of around 1,000 to 2,000 km (McKenzie, 1994;
Crosby et al., 2006; Crosby & McKenzie, 2009). A well-cited example of this comes
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from Africa (Holmes, 1965; McKenzie & Weiss, 1975; Burke, 1996; Jones et al.,
2012), which shows a clear pattern of swells and troughs across the continent. The
strong correlation between the patterns of gravity and topography, and in particular
the characteristic ratio of around 50 mgal km−1 between the two, has been used to
strongly argue for convective support of the topography (McKenzie, 1994; Crosby
et al., 2006; Jones et al., 2012).

In theory, maps of gravity and topography should provide information on the
planform of mantle convection. But extracting that information is challenging.
While gravity provides information on density variations within the Earth, the pro-
cess of inverting gravity data for density is highly non-unique. However, density
variations within the Earth on length scales of hundreds of kilometers are not arbi-
trary, but are controlled by the fluid dynamics of convection.

The aim of the present manuscript is to get a better understanding of the sur-
face expressions of mantle convection from a series of the simplest possible numerical
simulations of convection, and to compare these with geophysical and geological ob-
servations. The fluid dynamical problem is one that has been extensively studied
and discussed in the literature: Rayleigh-Bénard thermal convection in a 3D rectan-
gular box with a fluid of constant viscosity at Rayleigh numbers around 106. This
problem was first studied using laboratory experiments in large aspect ratio tanks,
using a layer of silicone oil whose depth was a few centimetres (Busse & Whitehead,
1971,9; Richter & Parsons, 1975). These experiments showed that the planform of
the convection was a spoke pattern, with hot rising plumes joined to each other
by hot sheets near the lower thermal boundary layer, and cold sinking plumes by
colds sheets near the top thermal boundary layer. White (1988) carried out similar
experiments using a fluid whose viscosity was a strong function of temperature, and
showed that at high Rayleigh number the convective planform was also a spoke
pattern.

It is now possible to carry out three-dimensional time-dependent fully-resolved
numerical experiments at Rayleigh numbers of 105−107, and the results of many such
experiments have been reported (Houseman, 1990; Christensen & Harder, 1991; We-
instein & Christensen, 1991; Tackley, 1993,9; Larsen et al., 1997; Sotin & Labrosse,
1999; Zhong, 2005; Galsa & Lenkey, 2007; Vilella & Deschamps, 2017,0). Such exper-
iments have an important advantage over tank experiments, because it is straight-
forward to calculate the geophysical observables from the numerical solutions.

We carried out our calculations with an infinite Prandtl number fluid, and used
the Boussinesq approximation throughout. We used large aspect ratio boxes, similar
to those previously used in tank experiments, to allow the convective circulation to
determine its own planform rather than being dominated by the lateral boundaries.
We use our experiments to show which features of the observations are readily
explained by the simplest models, and which features are not. We do not attempt
to construct a realistic model of the Earth. In this respect our aim is the same as
that of the early tank experiments, and, in addition, to extend them to encompass
the observables: the gravity field, surface deformation and melt generation. In
particular, by allowing the density variations to arise naturally from fluid dynamics,
such experiments allow an exploration of short wavelength (< 100 km) temperature
variations, which are likely to be most clearly expressed by volcanism.
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Two effects that are known to be important in the Earth are not taken into
account in the simple constant viscosity Boussinesq model we use. The first is
the variation of viscosity with temperature. It is this effect that produces plates,
and therefore our modelling does not include the dynamics of plate motions. The
other effect is viscous dissipation, which is intimately related to vertical density
variations that result from lithostatic pressure (Spiegel & Veronis, 1960; Jarvis &
McKenzie, 1980; Schubert et al., 2001). Viscous heat generation has little effect on
the circulation even when the relevant term in the equations cannot be neglected.
Such heating occurs in boundary layers where temperature gradients are large. As a
result the entropy and potential temperature (appendix A.5) is little affected (Jarvis
& McKenzie, 1980), though the convection becomes more time dependent.

The approach taken here complements a popular alternative approach to mod-
elling gravity and topography using information from seismic tomography (Hager &
Richards, 1989; Flament et al., 2013). In such studies, estimates of density varia-
tions within the mantle are inferred from tomography and used to make predictions
of gravity and dynamic topography. Though these studies have had some success at
predicting the very long wavelength (> 6,000 km) features of Earth’s gravity, they
depend on knowing the relationship between density ρ and the seismic velocities VP

and VS, and also on a rheological model of the mantle. Furthermore, since these
calculations are based on seismic tomography, they are limited by its resolution,
which is not yet sufficient to map rising and sinking plumes in the upper mantle.
Our approach also departs from the common assumption of many Earth Scientists,
who believe the convective planform of mantle convection consists solely of plumes
and the plates. This assumption arises from the work of Wilson (1963) and Mor-
gan (1971), who showed that the relative motion between major volcanic centres
beneath plate interiors was sufficiently slow that they could be used to define a
single world-wide reference frame. Their ideas have been enormously influential.
But they are based on an intuitive conception about the planform of high Rayleigh
number convection, rather than on fluid dynamical experiments. They also predate
our understanding of polybaric melt generation.

The manuscript is organized as follows. Section 2 describes the fluid dynamical
simulations, and how they are scaled to parameter values appropriate for the Earth’s
mantle. Section 3 discusses the predicted gravity, topography and their spectral
properties. Section 4 discusses melt generation. Section 5 compares the results from
the fluid dynamical experiments with the observed gravity and topography, and with
the volcanism of Africa and the Middle East, and conclusions follow in section 6. An
appendix provides further technical details on the simulations and data processing.

2 Numerical experiments
We ran 12 numerical experiments of isoviscous thermal convection in a rectangular
box. Temperature was fixed at the top and bottom boundaries. To examine the
influence of dynamical boundary conditions, runs were made for all combinations
of freely slipping or rigid boundary conditions on the top and bottom boundaries.
Reflection boundary conditions were applied at the side boundaries.

All convection simulations were performed using v2.01 of the ASPECT mantle
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convection code (Dannberg & Heister, 2016; Heister et al., 2017; Bangerth et al.,
2018). The code was used to solve the dimensionless versions of the Boussinesq
governing equations of thermal convection in an 8× 8× 1 rectangular box, through
a small modification of the “convection-box” example discussed in the ASPECT
manual. The governing equations in dimensional form are

∇ · v = 0, (1)
−∇P + η∇2v = −ρ0gαθẑ, (2)

Dθ

Dt
= κ∇2θ, (3)

where v is the velocity, P is the difference in pressure from hydrostatic, θ is potential
temperature, ρ0 is the reference mantle density, α is the thermal expansivity, η is the
viscosity, and κ is the thermal diffusivity. We assume constant thermal conductivity,
constant heat capacity, constant viscosity, and constant thermal expansivity. In
dimensionless form the governing equation are

∇ · v = 0, (4)
−∇P +∇2v = −Raθẑ, (5)

Dθ

Dt
= ∇2θ, (6)

where all lengths have been scaled by the layer depth d, time by the diffusion time
d2/κ, pressure by ηκ/d2, and potential temperature by the potential temperature
difference ∆Tp across the layer. Just one dimensionless parameter describes this
simple system, the Rayleigh number, defined by

Ra =
ρ0gα∆Tpd

3

ηκ
. (7)

Runs were performed at three different Rayleigh numbers: Ra = 105, 3 × 105, and
106. A uniform resolution of 32 cells in the vertical and 256 cells in the horizontal
was specified for all simulations. Quadratic finite elements were used for tempera-
ture and velocity, and linear finite elements for pressure. Simulations were run until
the system reached a quasi-steady state, which was monitored by examining the be-
haviour of the mean temperature and RMS velocity over time. Each simulation ran
for a minimum of six times the thermal time constant for the layer (= 6 d2/(π2κ)).

Snapshots of the 12 experiments are shown in Figure 1. The images are made
to mimic the shadowgraph visualization technique commonly used in laboratory
experiments (Busse & Whitehead, 1971,9; Richter & Parsons, 1975; Whitehead &
Parsons, 1977; White, 1988). To make a shadowgraph in the laboratory, light is
shone from below through the layer of fluid and projected onto a screen. Refraction
causes the light to focus and defocus according to the temperature variations within
the fluid through which it passes. The effect is to make upwellings appear dark and
downwellings appear bright. Mathematically, a shadowgraph produces a plot of the
Laplacian of the vertically averaged temperature (Jenkins, 1988; Travis et al., 1990),
and this is how the images in Figure 1 were computed.
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Figure 1: Artificial shadowgraphs of the 12 numerical experiments of thermal con-
vection in an 8×8×1 rectangular box. Each column is at a given Rayleigh number,
and each row is at a given choice of boundary conditions for the Stokes flow. In
each case the first word corresponds to the top boundary, the second word to the
bottom boundary; so free-rigid refers to a free-slip top and rigid bottom boundary
condition.
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Quantity Symbol Value
thermal expansivity α 4.0× 10−5 K−1

acceleration due to gravity g 9.81 m s−2

layer thickness d 600 km
reference mantle density ρ0 3300 kg m−3

thermal conductivity k 3.7 W m−1 K−1

specific heat capacity Cp 1.3× 103 J kg−1 K−1

Table 1: Common parameter values for all runs. These values are appropriate for
the top ∼ 100 km of the upper mantle beneath the lithosphere

The planform of convection at these Rayleigh numbers is spoke pattern (Busse
& Whitehead, 1974). Hot and cold plumes develop from the top and bottom of the
layer: the “hubs” of the planform. Hot and cold sheets, the “spokes” of the planform,
radiate from the plumes. These sheets are formed by instabilities in the top and
bottom boundary layers, and the shearing associated with the plumes suppresses
instabilities with other geometries. The planform is time-dependent.

Several well-known features stand out from the shadowgraph pictures. The first
is that as the Rayleigh number increases the thicknesses of the upwellings and down-
wellings become narrower. For the free-free and rigid-rigid cases the upwellings and
downwellings are symmetric, but there is a notable asymmetry in the nature of
upwellings and downwellings in the free-rigid and rigid-free cases (Kvernvold, 1979;
Weinstein & Christensen, 1991). Also notable is the change in horizontal distance be-
tween upwelling and downwelling with boundary condition: this distance is shorter
for rigid-rigid simulations than for free-free simulations.

Our main interest here is the surface observables associated with mantle con-
vection. The simulations were performed using dimensionless variables, with the
dimensionless Rayleigh number as the only control parameter. To make predic-
tions about observable quantities, these simulations must be scaled appropriately
to Earth-like values. For most quantities we can simply use typical mantle estimates,
and these values are given Table 1. We consider here just upper mantle convection,
and so choose as an appropriate layer thickness d = 600 km to scale all lengths.

Choosing an appropriate scaling of temperature is less straightforward. The
numerical simulations essentially provide dimensionless potential temperatures. The
potential temperature is the temperature that the mantle material would have if it
were moved to the Earth’s surface isentropically and without melting (McKenzie
(1970), appendix A.5).

The scaling of the dimensionless temperature is required to satisfy two condi-
tions: The first is that the average interior temperature must correspond to a man-
tle potential temperature of 1315◦C. This choice ensures that the thickness of the
oceanic crust is 7 km, generated by isentropic decompression beneath a spreading
ridge using the parametrisation of Katz et al. (2003). The second condition arises
from the top of the convecting system not being at the Earth’s surface. We envisage
that there is a rigid mechanical boundary layer (MBL) which separates the Earth’s
surface from the top of the convecting system. The temperature near the base of the
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BC Ra η (Pa s) MBL (km) ∆Tp (K) hRMS (m) ∆gRMS (mgal)
rigid-rigid 106 2.8× 1020 66.8 855 307 16.3
rigid-rigid 3× 105 1.3× 1021 53.8 1188 636 32.9
rigid-rigid 105 5.3× 1021 37.2 1648 1300 63.7
free-rigid 106 2.3× 1020 80.1 709 244 11.2
free-rigid 3× 105 1.1× 1021 71.2 1002 495 21.0
free-rigid 105 4.4× 1021 59.4 1349 958 37.1
rigid-free 106 2.1× 1020 66.7 660 325 15.5
rigid-free 3× 105 1.0× 1021 54.6 935 672 32.6
rigid-free 105 4.2× 1021 38.6 1307 1333 65.2
free-free 106 1.4× 1020 82.8 442 235 10.1
free-free 3× 105 7.0× 1020 74.7 651 476 19.8
free-free 105 3.0× 1021 64.6 912 943 37.7

Table 2: Parameter values and magnitudes of observables for each simulation which
yield a lithospheric thickness of 100 km and an interior potential temperature of
1315◦C. Columns from left to right: BC, boundary conditions at top-bottom; Ra,
the Rayleigh number; η, viscosity; MBL, thickness of the mechanical boundary
layer; ∆Tp, potential temperature difference across the fluid layer; hRMS, root mean
square of the dynamic topography at the top of the convecting region (as plotted
in Figure 4); ∆gRMS, root mean square of the gravity anomaly at the top of the
convecting region (as plotted in Figure 3).

MBL is where T/Ts, where Ts is the melting temperature, is highest, and therefore
the viscosity is lowest (e.g. Frost & Ashby, 1982). For this reason we used both
free-slip and rigid boundary conditions on the top surface of the convecting box. A
stress-free boundary is probably the better approximation to the behaviour of the
real Earth. Heat transfer through the MBL is purely by conduction, and we assume
the thermal profile is linear through this region, and equal to 0◦C at the Earth’s
surface. At the top of the convecting region we assume that both the horizontally-
averaged temperature and heat flux are continuous with that in the MBL. Finally we
determine the thickness of the MBL by prescribing a lithospheric thickness, which
we define as the intersection of the linear conductive profile of the MBL with an
isentropic profile at the interior mantle potential temperature. In what follows the
lithosphere thickness is fixed at 100 km, except when considering melt generation
where we have varied this parameter, as melt generation is particularly sensitive to
it. This choice of interior potential temperature and lithospheric thickness fixes the
heat flux for all simulations to be 50 mW m−2, which is similar to that through old
sea floor (Hasterok, 2013). The resulting associated parameters, which include the
upper mantle viscosity, are given in Table 2. The horizontally-averaged potential
temperature profiles after scaling are shown in Figure 2.

With Rayleigh numbers in the range 105 to 106, Table 2 shows mantle viscosity
values vary from 1.4 × 1020 Pa s to 5.3 × 1021 Pa s, which are around the range
expected for the upper mantle (∼ 1021 Pa s). The higher the Rayleigh number, the
lower the inferred viscosity, the smaller the potential temperature difference across
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Figure 2: Profiles of horizontally-averaged potential temperature. Zero depth repre-
sents the top of the convecting region (the base of the mechanical boundary layer).
The four panels show the four choices of boundary condition. The dimensional scal-
ing is such that the interior potential temperature is 1315◦C and the lithospheric
thickness is 100 km.
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the layer, and the thicker the MBL. Appendix A.4 discusses further the behaviour
of the parameters with Rayleigh number.

3 Gravity and topography
Examples of the gravity and topography at the top of the convecting box when there
is no lithosphere present are shown in Figures 3 and 4, calculated from the expres-
sions in Parsons & Daly (1983) (appendix A.1). The gravity field takes account of
the contribution from the thermal expansion of the fluid and that from the topog-
raphy (assuming deformable top and bottom boundaries). Both shadowgraphs and
the plots of gravity and topography are filtered versions of the temperature field in
the box, but they involve distinctly different kinds of filters. Since the shadowgraph
represents the Laplacian of the vertically-averaged temperature, it is equally sensi-
tive to temperature variations at all depths, and acts to emphasise short-wavelength
features. By contrast, gravity and topography act to attenuate short-wavelength fea-
tures in the temperature field, particularly those at depth (Parsons & Daly, 1983).

Before comparing the results from the numerical models with the observations
a further filter needs to be be applied, to account for the effect of the overlying me-
chanical boundary layer. This layer has a number of effects. First, gravity anomalies
are attenuated by the thickness of the layer. Second, the elastic properties of the
overlying plate acts to filter out the topographic expression of short-wavelength fea-
tures, with the magnitude of this effect dependent on the assumed effective elastic
thickness (Te). Figures 5 and 6 show the expected gravity and topography at the
surface, after applying a filter for the mechanical boundary layer, assuming an elastic
thickness Te = 30 km. The effect of all this filtering is to remove much of the short
wavelength information that is visible in the shadowgraph images. In particular, the
filters emphasise the “hubs” of the convective pattern, and suppress the expression
of the “spokes”. As will be seen in the next section, the effect of the filter on melt
generation is even more important. As the thickness of the MBL increases it first
suppresses melt generation in the spokes and then in the hubs.

The images in Figures 5 and 6 demonstrate three key points: First, the predicted
amplitude of gravity anomalies is comparable with the observed anomalies (compare
scale of Figure 5 with Figure 13(c)). Second, the spatial patterns of gravity anomalies
and topography are sensitive to the assumed boundary conditions. Third, there is
a good correlation between the topography and the gravity in plots of the values of
gravity and topography at each spatial location (Figure 7), which closely resemble
similar plots that have been made using observed values of gravity and residual
topography (e.g. see Figures 6 and 7 of Crosby & McKenzie (2009)). The slope
of these plots represents a characteristic average value of the admittance (ratio of
gravity to topography) associated with the convection. A characteristic air-loaded
admittance between 43-53 mgal km−1 is inferred from Figure 7, corresponding to
values of 30-37 mgal km−1 when overlain by water. These values are similar to those
previously reported (Parsons & Daly, 1983).
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Figure 3: Gravity anomalies at the top of the convecting box for the Ra = 106

simulations. The region shown is approximately the same size as the region outlined
by the thick black line in Figure 11. Each panel shows a different combination of
boundary conditions. In each case the first word corresponds to the top boundary,
the second word to the bottom boundary; so free-rigid refers to a free-slip top and
rigid bottom boundary condition.
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Figure 4: Dynamic topography at the top of the convecting box for the Ra = 106

simulations.
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Figure 5: Gravity anomalies expected at the Earth’s surface when the lithospheric
thickness is 100 km. Plots are as in Figure 3, except the attenuation of gravity
anomalies through the mechanical boundary layer and an elastic plate with Te =
30 km has been taken into account.
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Figure 6: Topography expected at the surface, after flexural filtering through an
elastic plate with Te = 30 km.
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Figure 7: Cross plots of gravity against topography at the top of the convecting box
for the four Ra = 106 simulations. In each case a geometric regression line has been
calculated, and marked on each plot is the slope Z of that line, and r2, the square
of the correlation coefficient. If the boxes are overlain by water the values of Z are
reduced by a factor of (ρ0 − ρw)/ρ0 ≃ 0.7
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Figure 8: (a) Power spectral density (PSD) of gravity anomalies at the top of the
convecting region as a function of wave number k = 2π/λ, for the four convection
simulations at Ra = 106, along with that estimated for the Earth from the gravity
model DIR-R5. Log scales are used for both axes. The approximate spherical
harmonic degree estimated using Jeans relation is plotted along the top axis. Two
thin line segments show slopes which yield a power law decay proportional to k−2

(Kaula’s rule) and k−3. (b) Power spectral density of dynamic topography at the top
of the convecting box as a function of wavenumber, along with that estimated for the
Earth by Hoggard et al. (2016). (c) Admittance (the ratio of gravity to topography)
at the top of the convecting region as a function of wave number, assuming air-
loading. (d) Coherence (square of the correlation between gravity and topography)
at the top of the convecting region as a function of wave number.
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An alternative way to assess the predictions of gravity and topography is to
work in the frequency domain rather than the spatial domain. Figure 8(a) and
(b) show the power spectral density of gravity and topography at the top of the
convecting box (appendix A.2), along with estimates for the Earth. The figures show
that the convection experiments have most power over a range of wavelengths from
around 500 to 2000 km, where the estimates of gravity anomalies are comparable
in magnitude with those of the Earth. This behaviour reflects the fact that the
convection organises into cells where the distance from one upwelling to the next is
around twice the layer depth, corresponding to a wavelength around 1200 km. Away
from this broad peak the power from the convection experiments decays. At the
short wavelengths shown in the plot, this decay in the power spectral density scales
roughly as k−3. The different boundary conditions in the convection experiments
lead to subtle differences in the gravity spectra in Figure 8. For example, there
is greater power at long-wavelengths for those simulations with free-slip bottom
boundary conditions than rigid. There is also greater power at short wavelengths
for the simulations with rigid top boundary conditions than free-slip top boundary
conditions.

The power spectral density of gravity for the Earth is notably different from that
of the convection experiments. Overall, the Earth’s power spectral density decays
broadly with wavenumber as k−2, a power law which is referred to as Kaula’s rule.
In detail, the slope of decay flattens slightly in the 2000 km to 500 km wavelength
band, before becoming steeper at wavelengths shorter than 500 km, but not decaying
as steeply as in the convection experiments. The difference between the convection
experiments and the Earth for wavelengths shorter than 500 km is to be expected:
on Earth surface loading causes short wavelength topography that is supported by
elastic stresses in the plate. The short wavelength power in the Earth’s gravity field
arises from surface loading, not mantle convection. At long wavelengths (>2000 km)
mantle convection should play an important role in determining the gravity field on
Earth, but the convection experiments here have notably less power than the Earth.
Thus the upper mantle convection modelled here does not account for the magnitude
of the long-wavelength portion of the Earth’s gravity field.

Figure 8(b) shows the corresponding spectra for predictions of dynamic topog-
raphy. The shape of the topography spectra of the convection runs is different from
that for the gravity. The topography spectra are broadly flat up to around a wave-
length of 1000 km, and then decay steeply at shorter wavelengths. Thus dynamic
topography has relatively more long wavelength power than does gravity, and this
can be seen in the space domain plots of Figure 3 and Figure 4 – the topography
plots look smoother than the gravity plots (as noted by Craig & McKenzie (1987)).

It is more difficult to compare predictions of dynamic topography with obser-
vations. The reason for this is that there are significant long-wavelength features
in the Earth’s topography that are not associated with mantle convection e.g. the
difference in elevation between the oceans and the continents, and other topography
associated with variations in crustal thickness. A recent attempt has been made to
estimate the power spectrum of dynamic topography by Hoggard et al. (2016), by
fitting spherical harmonics to point observations of residual depth in the oceans,
and a fixed scaling of long-wavelength gravity anomalies in the continents. Their
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estimate of power indicates a Kaula-rule-like decay in the power spectral density
as k−2, and is plotted in Figure 8(b). At wavelengths longer than 2000 km the
convection experiments are not able to explain the Hoggard et al. (2016) estimate
of dynamic topography. At shorter wavelengths spectra become more comparable,
although only a limited comparison can be made because the Hoggard et al. (2016)
estimate is limited to spherical harmonic degree 30 (a wavelength of 1300 km).
The Hoggard et al. (2016) estimates are based on air-loading in the continents and
water-loading in the oceans. The power spectra of the convection experiments in
plotted in Figure 8(b) assume air loading. The effect of water loading would be to
increase the amplitude of the power spectral density of the topography by a factor
of (1 − ρw/ρ0)

2 ≈ 2, which would represent only a small shift on the log-scale plot
of Figure 8(b).

In addition to comparing the observed and calculated individual spectra of grav-
ity and topography, it is also of interest to look at their relationship to one another
(Parsons & Daly, 1983). This relationship is typically characterised in terms of the
admittance and coherence of the two signals, with the topography taken as input
and the gravity as output (appendix A.3). Figure 8(c) shows the admittance in
the spectral domain, calculated from the numerical experiments. The value of the
admittance increases with increasing wave number (decreasing wavelength), approx-
imately as log(k) for the range of wave numbers shown. The behaviour of admittance
with wave number is similar for the different boundary conditions over the range of
interest, with significant departures only noticeable at long wavelengths (>2000 km).
Indeed, at long wavelengths the admittance for the free-rigid case becomes negative
around a wavelength of 3700 km (as noted by Parsons & Daly (1983), see their Fig-
ure 5). Figure 8(c) is consistent with the behaviour in the cross-plots of Figure 7.
The gravity anomalies have most power at wavelengths around 1000 km, correspond-
ing to an air-loaded admittance of around 45 mGal km−1 in Figure 8(c), which is
broadly the slope obtained from the cross-plots. The corresponding coherence in
Figure 8(d) is close to 1, reflecting the good correlation between the two observ-
ables that can be seen in the space domain plots. Only at wavelengths longer than
2000 km is a weak coherence between the signals seen, and then only significantly
for the free-rigid case. This behaviour mirrors the admittance at long-wavelengths
for the free-rigid case, where gravity and topography correlate positively except for
wavelengths longer than 4000 km when they correlate negatively.

The frequency domain plots in Figure 8 illustrate the spectral properties of the
gravity and topography at the top of the convecting box, as shown in the space
domain in Figures 3 and 4. When considering signals at the Earth’s surface, the
spectral properties will be further modified by the filtering effect of the MBL on
top. How significant this effect is depends on the effective elastic thickness and the
thickness of the MBL. For an elastic thickness Te = 30 km as used in Figures 5 and
6, the wavelength at which the Fourier coefficients of topography are reduced by a
factor of 2 is λ

1/2
flex = 330 km. Wavelengths shorter than this will be significantly

attenuated by the flexural filtering; wavelengths longer than this will not. The
topography spectra in Figure 8 would only be significantly different at wavelengths
shorter than λ

1/2
flex were a flexural filter to be applied. The effect of flexural filtering on

the gravity is more complicated, and acts to produce a modest increase in the gravity
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signal in a wavelength band around that associated with the MBL thickness and that
associated with flexure (see appendix A.1 and Figure 15 for further discussion).

4 Melt generation
The generation of melt, its separation from its source regions and the time τ required
for it to move from its source to the surface, have all been extensively studied, both
theoretically using two-phase flow equations, and observationally, using a variety
of geochemical approaches. The two-phase flow equations show that basaltic melt
separates from its source regions when the melt fraction by volume ϕ0 exceeds ∼
0.5% (McKenzie, 1985a). Studies of the composition of abyssal peridotites (Johnson
et al., 1990; Warren, 2016) show that the incompatible elements that were present
in the source before melting occurred have been removed by the melt. Estimates
of the melt fraction present during the melting are between 0.2 and 0.7% (Slater
et al., 2001; Liang & Peng, 2010). Estimates of ϕ0 and τ can also be obtained
from measurements of U-series disequilibria (McKenzie, 1985b; Kokfelt et al., 2003;
Stracke et al., 2006; Koornneef et al., 2012; Turner et al., 2016) . Most estimates
give ϕ0 ≤ 0.5% and τ ≤ 1 ka. Perhaps the strongest constraint on the values of
both ϕ0 and τ comes from modeling the generation of melt by deglaciation. When
most of the ice covering Iceland melted at the end of the last glaciation the melt
production rate suddenly increased (Maclennan et al., 2002; Eason et al., 2015).
The thickness of the ice that melted was about 2 km, increasing the melt fraction
present in the source region by only about 0.2% (Jull & McKenzie, 1996; Eksinchol
et al., 2019). This increase was sufficient to generate large shield volcanoes within
about 1 ka of the removal of the ice. These models and observations all show that
melt generated by decompression melting in the upper mantle rapidly moves to the
surface, and that no appreciable volume remains in the source region. We therefore
calculated the rate of melt production by simply vertically-integrating the melting
rate over the thickness of the layer in which melt was being produced.

Figure 9 shows the calculated rate of melt production for the four Ra = 106 simu-
lations, with a lithospheric thickness of 80 km, and assuming various water contents.
The hydrous melting parametrisation of Katz et al. (2003) was used (appendix A.5).
Melt production in Figure 9 only occurs where the mantle is upwelling, where the
gravity anomalies and topography are positive (Figures 5 and 6). However, the spa-
tial extent of the regions of high melt rate are smaller than the regions of positive
gravity anomaly. Most of the melting takes place in the regions directly above the
narrow (∼ 60 km diameter) upwelling plume conduits, where the decompression
rate is greatest. However, melting also takes place, albeit to a lesser degree, in a
broader region around the conduits and above some of the rising sheets connecting
neighbouring plumes (i.e. on the spokes as well as the hubs of the spoke-pattern).
Melt generation along some of the spokes is particularly clear for the free-free simu-
lation, with linear bands of relatively low melt production connecting concentrated
centres of relatively high melt production.

The rate of melt production is particularly sensitive to the thickness of the litho-
sphere and the water content of the mantle. Figure 10 illustrates the effect of
varying these two parameters for the free-rigid Ra = 106 simulation. At low water
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Figure 9: Vertically integrated rate of melt production beneath an 80 km thick
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mic. Numbers in white give the total rate of melt production in km3 ka−1 for each
contiguous zone of melting. Regions of total melt production less than 1 km3 ka−1

are not labelled.

19



10 2 10 1 100 101 102

Melt Rate (km/Ma)

70 km

0 ppm 100 ppm 1000 ppm

80 km

100 km

180 km

Figure 10: Vertically integrated rate of melt production for the free-rigid simula-
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km).
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contents, and beneath thick lithosphere, melting is restricted to the hubs in the
spoke-pattern, if indeed melting happens at all. However, high water contents and
thin lithosphere result in melting along the spokes. As Figure 10 illustrates, for
lithosphere as thick as 180 km, melting is suppressed unless the water content is
sufficiently high (∼ 1000 ppm). For lithosphere as thin as 70 km, melting along
both the hubs and the spokes can be seen even for modest (∼ 100 ppm) water
contents. The water content of the convecting upper mantle is probably between
100 and 200 ppm (Michael, 1995; Saal et al., 2002) . In contrast the water content
is likely to be considerably greater where the base of the lithosphere has been en-
riched by metasomatism. It is not straightforward to estimate the water content of
such regions using that in the nodules brought up by magmas such as kimberlites
from depths of 100-200 km, because they are often infiltrated by the host magma.
Protons are especially mobile. More reliable estimates can be obtained from the Ce
concentration, because Ce and H have similar bulk partition coefficients between
magma and peridotite (Aubaud et al., 2004), and the Ce concentration in nodules
is less affected by infiltration than is that of H (Erlank et al. (1987) p 283). The Ce
concentration in the commonest class of nodules is ∼ 10 ppm (Erlank et al., 1987),
or about 10× that of the convecting upper mantle. Therefore the metasomatically
enriched region at the base of thick old lithosphere probably has a water concen-
tration of ∼ 1000 ppm. Where the lithosphere is thin, Figure 10 shows that such
high water concentrations will lead to widespread melting along spokes, and at the
hotter hubs melting at depths as great as 180 km.

5 Terrestrial Observations
The numerical experiments described above show that the planform of mantle con-
vection will be most obviously expressed in the surface observables when both the
elastic thickness and lithospheric thickness are small. Figure 11 shows that the
lithospheric thickness exceeds 120 km over large regions of western and southern
Africa. In these regions the volcanism consists of small-volume alkalic eruptions,
such as kimberlites, that contain high concentrations of carbonates and hydrous
minerals. Where kimberlites are diamond-bearing, Figure 11 shows that the litho-
spheric thickness generally exceeds 150 km. The limited spatial resolution of surface
wave tomography, of ∼ 250 km, probably accounts for the few diamond-bearing lo-
cations in Figure 11 that appear to have thinner lithosphere.

The lithospheric thickness within much of the rectangle marked by the thick con-
tinuous black line in Figure 11 is less than 80 km, and the horizontal extent of this
region is similar to that of the numerical experiments. In the eastern and northern
parts of the area there are sufficient surface gravity measurements to allow Te to
be estimated from the transfer function between the free air gravity anomalies and
the topography (McKenzie & Fairhead, 1997), giving values of 3-4 km (see supple-
mentary material). The coherence method and Bouguer anomalies provides only an
upper bound, not an estimate, of the value of Te (McKenzie, 2016). Within the box
marked by the dotted lines in Figure 11 there are few surface gravity measurements.
Instead the satellite gravity field DIR-R5 can be used to show that the admittance is
about 50 mGal km−1 between wavelengths of 200 and 1000 km, and that the elastic
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Figure 11: Lithospheric thickness calculated from surface wave tomography (Priest-
ley et al., 2018). The thick square box indicates a region that is of the same horizon-
tal extent as the convection simulations. The elastic thickness of the region within
the dotted lines is likely to be less than 4 km (Figure 12).
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Figure 12: Plots of the admittance and coherence of gravity and topography versus
1/λ where λ is the wavelength and k = 2π/λ the wavenumber, in three regions.
(a) and (b) use free air gravity anomalies and topography from inside the box in
Figure 11 marked by the dotted line. The gravity field was calculated from DIR-R5
(Bruinsma et al., 2014) by setting the coefficients from l = 2 to 7 to 0, and applying
a taper f,= (l − 7)/5, to those from l = 8 to 11 (wavelengths 3333 to 5000 km). A
low pass filter falling to 1/2 at 250 km was applied to remove the short wavelength
anomalies associated with elastic flexure. The topography is taken from ETOPO5.
The admittance was calculated using the topography as input, gravity as output.
The two dotted lines show the flexural admittance for two values of the elastic
thickness Te. (c)-(e) show corresponding plots for the Pacific (see supplementary
material for maps) and the Indian Oceans (see Figure 14). The gravity anomalies
were calculated from the DIR-R5 coefficients with those of degree 2 set to 0. The
admittances in (c) and (e) were calculated from the ratio of the spectral coefficients.
The dotted lines show the flexural admittance for Te = 20 km.23



thickness is probably less than 4 km (Figure 12(a) and (b)). Therefore in this region
and wavelength band both the gravity and topography are controlled by convection.
The same is not the case in southern Africa, where the elastic thickness is about 30
km (McKenzie et al., 2015).

Figure 13 shows maps of gravity, topography, and subaerial volcanism across
Africa and Arabia. The volcanism beneath the Red Sea and in the Afar results
from upwelling of the mantle between separating plates. However, in Ethiopia,
Kenya and Kivu the upwelling from the limited extension is insufficient to account
for the extensive volcanism. There is no obvious orientation of the topography
and gravity anomalies, probably because Africa is almost stationary with respect
to the hotspot frame. The correspondence between the features in Figure 13 and
the maps from the numerical experiments is striking. Volcanism is almost entirely
restricted to regions where the lithospheric thickness is less than 70 km. The only
clear exception is Kivu, where the spatial resolution of the surface wave tomography
is probably insufficient to resolve the thickness of the thin lithosphere beneath the
Western Rift. The linear volcanic feature extending from Kenya to the Kars Plateau
resembles similar linear features in Figure 9, with localised regions of concentrated
upwelling being associated with positive gravity and elevation, and with enhanced
volcanism. Like the numerical experiments, the volcanism is more localised than
are the associated positive gravity and topographic anomalies. What is less clear
is which of the four combinations of boundary conditions best fits the observations.
Figures 5 and 6 show that the observed horizontal scales of the convective features
are probably larger than those of the rigid-rigid, and smaller than those of the free-
free, experiments. The scales of the anomalies in the other two experiments are
similar, both to each other and to the observed scales. The rigid-free experiment
has broadly circular patterns of positive gravity anomalies surrounded by linear
negative anomalies, whereas the free-rigid case has the opposite. The viscosity of
the lower mantle is greater, and that of the asthenosphere immediately below the
lithosphere less, than that of the upper mantle. These viscosity variations suggest
that the free-rigid experiment should match the observed patterns better than the
rigid-free case. However, the patterns in Figure 13 are not obviously more like the
free-rigid features than the rigid-free ones. Furthermore the variation of viscosity
with temperature, which has been ignored, may have a strong influence on the
geometry, and in particular whether the planform is dominated by rising or sinking
fluid in the hubs. At low Rayleigh numbers the answer to this question is controlled
by the sign of dη/dT , with the flow in the plumes being in the direction of increasing
viscosity (Segel & Stuart, 1962). If the same is true at large Rayleigh numbers the
hubs in both these experiments will consist of hot rising material.

The Cameroon Line forms a curve, similar to features in Figure 9. As the
lithosphere thickness increases to the SW, where the Line lies beneath Atlantic
lithosphere, the volcanism decreases. The association of positive gravity anomalies,
elevated topography and volcanism is clearly expressed even in relatively small fea-
tures like Aïr and Darfur. Many volcanic centres, such as Aïr and Hoggar, and Haruj
and Tibesti, are linked to each other by lines of positive gravity and topography,
where there is limited volcanism. An especially obvious feature extends from S.
Arabia to Anatolia, where the volcanism is beneath Western Arabia, not the Red
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Sea. Such lines are most clearly visible in Figure 13(c) and (e) where the lithosphere
is thin beneath NE Africa, Arabia and Anatolia. All these features are similar to
those of the numerical experiments, and all are consistent with a spoke pattern of
convection existing beneath the region. In particular, and as expected from Figure 9,
the extent of the volcanism is controlled by variations in lithospheric thickness, and
is limited in the south and east by the thick lithosphere of the Congo Craton.

The Cameroon Line and the line of active volcanism that extends from Afar to
eastern Anatolia have long puzzled geophysicists, because their geometry is difficult
to reconcile with a planform of mantle convection consisting of plumes. Sleep (1997,
2008) and Ebinger & Sleep (1998) argued that these linear volcanic features were
produced by lateral flow from plumes in channels beneath the lithosphere. One prob-
lem with this proposal is that the composition of the volcanics along the Cameroon
Line shows so little variation (Fitton, 1987; Lee et al., 1994).

A different model was proposed by Milelli et al. (2012) which emphasised the
location of the volcanism, which has remained in the same region of Africa as the
continent has moved. They argued that this behaviour required the volcanism to
result from thermal instabilities in the lower part of the lithosphere, rather than
being the surface expression of convective upwellings in the upper mantle below
the plates. The numerical experiments described above show that the expected
planform of upper mantle convection is that of hubs joined by spokes, both of which
can generate melt if the lithosphere is sufficiently thin. The observed linearity of
the Cameroon Line and other features in NE Africa therefore requires no special
explanation. The experiments also show that Milelli et al. (2012)’s observations
may also have a simple explanation, since the melting rate, and not the planform, is
controlled by the lithospheric thickness, and the volcanism of the Cameroon Line lies
along the northern edge of the thick lithosphere of the Congo Craton. In contrast
the line of volcanism from the Afar to Kars lies within a region of relatively uniform
lithospheric thickness. It is therefore unlikely that such linear features all form from
edge convection like that discussed by King & Anderson (1998).

In general it is not possible to compare the melt generation rates in Figure 9
with those observed because they are so rarely estimated by the geologists who
map the volcanics. An exception is Mount Cameroon, which is the most active
volcano in Africa. Its eruption rate was estimated by Suh et al. (2003) to be about
700 km3 /Ma. When the lithospheric thickness is 80 km the larger hubs in the
free-rigid experiment in Figure 9 produce about 6 × 104 km3 /Ma and the smaller
ones 1 × 103 km3 /Ma. The rates of melt generation in the numerical experiments
can therefore easily account for the observed rates. But they are quite inadequate
to account for the production rates that occur during major flood volcanism, which
commonly exceed 1 × 106 km3 /Ma. Like the long wavelength gravity anomalies
discussed below, simple isoviscous upper mantle convective models cannot account
for such events.

The box in Figure 11 is too small to be used to study the long wavelength com-
ponents (wavelengths > 1000 km) of the Earth’s dynamic topography and gravity.
These are best studied in the Indian and Pacific Oceans. The elastic thickness of old
oceanic lithosphere is about 20 km (e.g. McKenzie et al. (2014)). Therefore wave-
lengths greater than about 800 km are little affected by the thickness and elastic
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Figure 13: Maps of the volcanism, lithospheric thickness, gravity, and topography
within the region marked by the heavy black line in Figure 11. The gravity and
topography are shown without (Figure 13(c) and (e)) and with (Figure 13(d) and
(e)) the regions covered by volcanics, most of which are Miocene or younger, taken
from Thorpe & Smith (1974), Ball et al. (2019), and earthwise.bgs.ac.uk.
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properties of the lithosphere (Figure 12(c) and (e)). In many continental regions the
surface topography is dominated by isostatically compensated variations in crustal
thickness. Such structures are less common in oceanic regions, where the bathymetry
is principally controlled by the age of the lithosphere. The effect of plate cooling
can be removed by using a depth-age model, and regions of thick crust removed by
hand (e.g. Crosby et al., 2006; Crosby & McKenzie, 2009; Hoggard et al., 2017).
The resulting residual topography is then largely supported by convection. Fig-
ure 12 shows a comparison between free air gravity, calculated from DIR-R5 with
the coefficients of degree 2 set to zero, and Crosby’s values of residual depth in the
Indian and Pacific Oceans. Those obtained from Hoggard’s values of residual depth
are similar and are shown in the supplementary material. Figure 14 shows maps
of such anomalies in the Indian Ocean: those for the Pacific are illustrated in the
supplementary material. The admittance between wavelengths of 1000 and 2000 km
is about 30 mGal/km, in agreement with the values from the numerical experiments
in Figure 8. However, at wavelengths greater than about 2000 km the gravity and
residual depth anomalies in both oceans cease to be coherent. This incoherency is
particularly striking in the Indian Ocean, where the large negative gravity anomaly
covering the NE part of the Ocean (Figure 14(a)) has no expression in the residual
depth (Figure 14(b)). At wavelengths greater than 2000 km the observed power
spectrum also differs from that calculated from the box models (Figure 8(a)). The
power in the observed gravity field continues to increase at wavelengths longer than
2000 km, unlike that from the numerical experiments. This behaviour shows that
simple isoviscous convective models cannot account for the longest wavelength part
of the Earth’s gravity field, and suggest that it is not maintained by upper mantle
convection. Though the size of the boxes used for the numerical experiments is too
small to determine the power at such wavelengths accurately, there is no suggestion
in the planforms that the presence of lateral boundaries governs the scale of the
convection.

6 Conclusions
The numerical experiments described above show that the observed gravity and
topographic anomalies are reproduced by the simplest isoviscous fluid dynamical
model of thermal convection. The wavelength at which convective support domi-
nates elastic support is controlled by the elastic thickness Te, and varies from about
200 km where Te ≤ 4 km in NE Africa to ∼ 500 km in southern Africa, where
Te ∼ 30 km. Melt generation occurs where mantle material moves upwards, and
is therefore controlled by the lithospheric thickness, and not by the value of Te.
The correspondence between the volcanism and the gravitational and topographic
anomalies in NE Africa is striking, and shows that they all result from the convective
circulation.

There is no similar correspondence between the results from the numerical ex-
periments and the gravity and residual depth anomalies at wavelengths greater than
2000 km. Furthermore the absence of correlation between residual depth and gravity
anomalies with wavelengths greater than 2000 km in the Pacific and Indian Oceans
is unlike the behaviour observed at shorter wavelengths in these oceans. The sim-

27



  40.   60.   80.  100.  120.

−50.

−30.

−10.

−75.

−50.

−25.

 0.0

 25.

 50.

 75.

 100.

 125.

 gravity

   mGals

Indian Ocean gravity

  40.   60.   80.  100.  120.

−50.

−30.

−10.

−1.

 0.

 1.

 2.

 3.

depth

 km

 Indian Ocean residual depth 

(a)

(b)

Figure 14: Gravity and residual depth in the Indian Ocean. (a) Gravity from DIR-
R5, with coefficients l = 2 set to 0 and a filter applied, falling to 1/2 at 250 km,
to remove the short wavelength components. (b) Residual depths, averaged over
2◦ × 2◦ boxes (Crosby et al., 2006). The dots show the locations of the resulting
averages. Airy projection with centre −30◦N, 80◦E. β = 30◦.
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ple numerical models discussed here cannot account for the long wavelength gravity
anomalies with spherical harmonic degrees l ≤ 20.

The close correspondence between the calculated and observed topography, grav-
ity and volcanism suggests that it should be possible to use the surface observables
where the lithosphere is thin and Te is small, together with the isoviscous convective
equations, to map the convective circulation in the upper mantle.

Appendix

A Numerical methods
A.1 Gravity, topography, and flexure
To calculate surface gravity and topography, the second-order finite element tem-
perature fields were first linearly interpolated onto a regular grid of points with 64
mesh points in the vertical and 512 in the horizontal. The method of Parsons &
Daly (1983) and Craig & McKenzie (1987) was then used to calculate both topog-
raphy and gravity, by Fourier transforming the grids of data, multiplying by an
appropriate filter (given in Appendix A of Parsons & Daly (1983) for the different
boundary conditions), and transforming back. For gravity calculations both the top
boundary and the bottom boundary were assumed to be deformable. The defor-
mation of the top and bottom boundaries was calculated using the approximation
(ρ0 − ρw)gh = −σzz, where h is the deformation of the interface, σzz is the normal
stress at the relevant boundary in the fixed geometry of the convection simulations,
and ρw is the density of the fluid on the other side of the boundary.

The effect of an elastic layer above the convecting fluid is to low-pass filter the dy-
namic topography (Figure 15b). To produce the flexurally-filtered topography seen
in Figure 6, the Fourier coefficients of the topography in Figure 4 were multiplied
by the Fourier-domain flexural filter,

F (k) =
1

1 + (αflexk)4
, (8)

where k is the wave number, and the flexural parameter αflex is related to the elastic
thickness Te by

αflex =

(
ET 3

e

12 (1− ν2) (ρ0 − ρw) g

)1/4

. (9)

The Fourier coefficients are reduced by a factor of 2 at a characteristic wavelength
λflex = 2παflex. Values of the Young’s modulus E = 1011 Pa, and Poisson’s ratio
ν = 0.25 are assumed, such that λ1/2

flex = 330 km for an elastic thickness Te = 30 km;
and λ

1/2
flex = 85 km for an elastic thickness Te = 5 km. All plots assume air-loading

and thus set ρw = 0. For water-loading ρw = 1000 kg m−3.
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Figure 15: Spectral characteristics as in Figure 8, but at the surface after filtering
through the MBL and an elastic layer with thickness Te = 30 km. Notice the
significant decrease in the power of gravity anomalies at short wavelengths and a
moderate increase in the power at intermediate wavelengths.
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The effect of an elastic layer on gravity anomalies is subtle, because there is a
contribution to gravity anomalies both from the topography and from the density
variations at depth, which will be attenuated by a factor e−ktm if there is a MBL
of thickness tm on top. The gravity anomalies in Figure 5 are shown after this
filtering process, which is calculated assuming the MBL is laterally uniform. The
corresponding spectra are shown in Figure 15a. If ∆g0 and h0 represent the grav-
ity and topography estimated at the top of the convecting box, the corresponding
gravity ∆g1 at the surface can be calculated in the Fourier-domain from

∆g1(k) = (∆g0(k)− 2πGρ0h0(k)) e
−ktm + 2πGρ0h0(k)F (k), (10)

assuming air-loading. This equation splits the gravity anomaly into two components:
The term on the far right represents the gravity due to the surface topography, which
is attenuated according to the factor F (k) in (8). The other term represents the den-
sity variations at depth, which are attenuated as e−ktm due to the finite thickness of
the MBL. At long wavelengths gravity anomalies are unchanged by this additional
filtering. At wavelengths significantly shorter than both the flexural wavelength
λflex and the wavelength λm = 2πtm associated with the MBL, gravity anomalies are
strongly attenuated, as both the e−ktm and F (k) filters tend to zero. At intermedi-
ate wavelengths, particularly in the wavelength band around λm and λ

1/2
flex, gravity

anomalies actually slightly increase in magnitude due to this additional filtering.
This behaviour occurs because a MBL acts to separate mass excesses at the surface
(associated with positive gravity anomalies) from mass deficits at depth (associated
with negative gravity anomalies). The thicker the MBL, the greater the attenuation
of the negative anomalies, and the larger the net positive anomaly. Correspond-
ingly, there is a modest increase in the admittance due to the addition of a MBL
(Figure 15c; see section 2.3 of Crosby & McKenzie (2009) for further discussion). It
should be noted that having a laterally uniform thermal structure in the MBL is a
poor approximation, as it implies a discontinuity in heat flux between the MBL and
the top of the convecting box (where the heat flux varies laterally). However, we
have made such an approximation here because the convection simulations fix the
temperature at the top of the convecting layer, rather than at the Earth’s surface.
A better approach would model the temperature structure of the MBL during the
convection simulations. However, such a modification is unlikely to make more than
minor changes to the results of the calculations, because the thickness of the MBL
is small compared to that of the convecting layer (Table 2), and the temperature on
the upper boundary of the MBL is fixed. If the temperature structure of the MBL
is included in the calculations it is then no longer accurate to obtain the topography
and gravity for variable thicknesses of the MBL simply by filtering in the spectral
domain.

A.2 Power spectral density
Power spectral density (PSD) estimates were calculated using the method described
by Rexer & Hirt (2015). The initial data (either gravity or topography) is a regularly
spaced grid of points representing a region of dimensional extent Lx by Ly. Let the
number of grid points in the x-direction be N , and the number in the y-direction be
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M . The initial data is given as a matrix of values drs where r = 0, 1, . . . N−1, and s =
0, 1, . . .M − 1. The convection simulations have reflecting boundary conditions at
the sides, so the natural Fourier representation to use is a Discrete Cosine Transform
of the first type (DCT-I), which is equivalent to a discrete Fourier Transform of a
2N−2 by 2M−2 extended grid of data exploiting the even symmetry. The discrete
Fourier coefficients fpq are defined by equation (8) of Rexer & Hirt (2015),

fpq =
1

(2N − 2) (2M − 2)

2N−2∑
r=0

2M−2∑
s=0

drs exp

(
−πi

(
sp

N − 1
+

rq

M − 1

))
. (11)

The even symmetry extends the data such that for N ≤ r ≤ 2N − 2 the value is
taken from the original grid at r′ = 2N − 2 − r, and for M ≤ s ≤ 2M − 2 the
value is taken from original grid at s′ = 2M − 2 − s. In dimensional variables,
the corresponding wavenumbers of the transform are kx

p = πp/Lx and ky
q = πq/Ly.

Owing to the reflection boundary conditions, the discrete Fourier coefficients fpq are
real and even in both directions. A 2D grid of power spectral density can then be
computed from equation (10) of Rexer & Hirt (2015),

ϕpq = 4LxLy|fpq|2. (12)

Finally, the 2D-PSD were then azimuthally averaged in wavenumber space with a
bin-width of 1.3 × 10−3 km−1, to produce the 1D-PSD profiles that are shown in
Figures 8(a) and Figure 8(b) (with units of either mgal2 km2 or km2 km2).

Data for the Earth is typically given in terms of spherical harmonic coefficients,
which need to be manipulated before they can be compared directly with the 1D-
PSD profiles calculated for the Cartesian geometry of the convection simulations.
This process is also described by Rexer & Hirt (2015). The spherical harmonic degree
l can be related to the Cartesian wavenumber k by the Jeans relation approximation

k =
l + 1

2

R
(13)

where R is the radius of the Earth. An estimate of the 1D Cartesian PSD can be
obtained from

ϕPSD(k) = 4πR2 Pl

2l + 1
(14)

where Pl is the power at spherical harmonic degree l (see equation (13) of Rexer &
Hirt (2015)).

A.3 Admittance and coherence
The admittance in Figure 8(c) was computed as

Z(k) =
⟨∆g, h⟩
⟨h, h⟩

(15)

where ⟨·, ·⟩ represents the cross-power of the signals as a function of wavenumber
k, calculated in the same way as the power spectra by multiplying the Fourier
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BC Nu h′
RMS ∆g′RMS

rigid-rigid 0.189Ra0.281 1.682Ra−0.342 0.405Ra−0.308

free-rigid 0.228Ra0.283 1.098Ra−0.314 0.134Ra−0.242

rigid-free 0.247Ra0.277 1.626Ra−0.317 0.655Ra−0.328

free-free 0.253Ra0.306 1.191Ra−0.289 0.243Ra−0.259

Table 3: Approximate scalings with Rayleigh number for Nu, the Nus-
selt number (ratio of convective to conductive heat transfer); h′

RMS =
hRMS/ (ρ0α∆Tpd/(ρ0 − ρw)), dimensionless root-mean-square dynamic topography;
and ∆g′RMS = ∆gRMS/ (2πGρ0α∆Tpd), dimensionless root-mean-square gravity
anomaly.

coefficients and then azimuthally averaging. Since the Fourier coefficients are real,
the admittance is also real. The coherence in Figure 8(d) was calculated similarly
as

γ2(k) =
⟨∆g, h⟩2

⟨∆g,∆g⟩ ⟨h, h⟩
. (16)

A.4 Rayleigh number scalings
Boundary layer theory suggests that there should be systematic power-law scalings
with Rayleigh number for properties of the convecting system, such as the thickness
of boundary layers, and the heat flux. Table 3 shows such approximate scaling laws
that have been obtained from the 12 numerical runs presented here. These scaling
laws should be used with caution: they were determined from the properties of
the system at a single snapshot in time, for a limited range of Rayleigh numbers.
However, they illustrate the broad trends. As expected, Nusselt number increases
with Rayleigh number: the behaviour for the free-free system as Nu ∝ Ra0.3 is close
to to the 1/3 power law expected from boundary layer theory (McKenzie et al.,
1974). Since the dimensional scaling used in the main text essentially fixes the
heat flux, the potential temperature difference across the layer given in Table 2
scales as the inverse as the Nusselt number scaling, i.e. approximately as Ra−0.3.
Table 3 also shows scalings for dimensionless topography and dimensionless gravity,
which all scale roughly as Ra−0.3 although there are some differences in detail. This
scaling can be understood in broad terms from the expectation that the dynamic
topography should be proportional to the boundary layer thickness (Parsons & Daly,
1983). Since the scaling used in Table 3 includes a ∆Tp factor, the scalings of the
dimensional RMS gravity and topography in Table 2 go roughly as Ra−0.6.

The behaviour of the power spectral density with Rayleigh number is illustrated
in Figure 16 for the free-rigid simulations. The principal effect of changing Rayleigh
number is to change the amplitude of the power spectral density. This can be
understood from the scalings of RMS gravity with Rayleigh number above, and the
Parseval’s theorem result

∆g2RMS =
1

2π

∫
ϕ∆g

PSD(k) k dk (17)
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Figure 16: Power spectral density of gravity anomalies at the top of the convecting
box as in Figure 8(a), but showing the variation with Rayleigh number for the
free-rigid simulations.

which relates the square of the RMS value ∆gRMS to its power spectral density
ϕ∆g

PSD(k). Since RMS gravity in Table 2 scales roughly as Ra−0.6, the power spectral
density would be expected to scale as Ra−1.2. This effect can be seen in Figure 16:
reducing the Rayleigh number by a factor of 10 leads to a little over a order of mag-
nitude shift in the amplitude of the spectra. In addition to the change in amplitude,
there are some more subtle changes in the spectra associated with changing the
Rayleigh number. The lower Rayleigh number simulations appear to have relatively
higher power at long wavelength than short wavelengths. This is as expected from
the nature of the boundary layers, which are thicker for the lower Rayleigh number
runs.

A.5 The relationship between temperature and potential
temperature

To perform melting calculations it is necessary to convert from dimensionless poten-
tial temperature back to real temperature. In this section we describe this conver-
sion, and justify the approximate form of energy conservation that has been used in
(6). In dimensional variables, conservation of energy can be written

ρT
DS

Dt
= k∇2T +Ψ (18)

where S is the specific entropy of a fluid parcel, k is the thermal conductivity
(assumed constant), and Ψ is the viscous dissipation. The potential temperature θ
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can be defined in differential form as

dS = cpd (log θ) (19)

where cp is the specific heat capacity at constant pressure (also assumed constant).
The energy equation (18) becomes

Dθ

Dt
= κ

θ

T
∇2T, (20)

where κ = k/(ρcp) is the thermal diffusivity, and viscous dissipation has been ne-
glected. The use of (6) as a dimensionless governing equation for potential temper-
ature is justified provided the approximation

1

θ
∇2θ ≈ 1

T
∇2T (21)

is accurate, and that viscous dissipation is sufficiently small to be neglected.

A.5.1 No melting

In the absence of melting, the differential of potential temperature can be related
to those of temperature and pressure through the standard relationship

cp
dθ

θ
= dS = cp

dT

T
− α

ρ
dP (22)

where α is the thermal expansivity. The principal variation in pressure is hydrostatic.
Writing dP = −ρg dz, (22) can be written in terms of temperature and depth as

dθ

θ
=

dT

T
+

dz

ha

(23)

where ha is the adiabatic scale height, defined by ha = cp/(αg) ≈ 3, 300 km. Integra-
tion of (23) yields the relationship between temperature and potential temperature
in regions which are not partially molten,

T = θ exp

(
zref − z

ha

)
(24)

where zref is a reference depth, the depth at which potential temperature is chosen
to be equal to real temperature. This depth is chosen to be the Earth’s surface in
this work.

From (23) it follows that

1

θ
∇2θ =

1

T
∇2T +

2

ha

1

T

∂T

∂z
+

1

h2
a

. (25)

The magnitude of the second and third terms on the right hand side relative to the
first term scales approximately as l/ha and (l/ha)

2 where l is a typical scale over
which the temperature varies. If that scale l were the whole of the convecting layer
then l/ha = d/ha = 0.18 (a parameter known as the Dissipation number), which is
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relatively small. In fact, the length scale of the vertical temperature variations will
be much smaller than the layer depth, with boundary layer thicknesses on the order
of 100 km or less, giving l/ha = 0.03. Thus both the second and third terms on the
right hand side of (25) are sufficiently small that the approximation in (21) is well
justified in the regions that are not partially molten (McKenzie, 1970). The small
Dissipation number for upper mantle convection also justifies the neglect of viscous
dissipation term in (18).

An additional approximation has been made in writing the buoyancy term on the
right-hand side of the Stokes equation in (2) in terms of the potential temperature θ.
Formally, density variations in the fluid are determined by the actual temperature,
not potential temperature, and the right-hand side of (2) should be −ρ0gαT ẑ. The
convective flow is driven by horizontal gradients in the actual temperature, not
the potential temperature. From (24) it follows that the horizontal gradients in
temperature are related to the horizontal gradients in potential temperature by

∂T

∂x
=

∂θ

∂x
exp

(
zref − z

ha

)
, (26)

with a similar expression for the y-derivative. The horizontal gradients of potential
temperature and actual temperature differ by an exponential factor whose magni-
tude is at most the exponential of the Dissipation number. For the upper mantle
convection we consider here, this is a relatively small difference, and justifies the
approximation made in using the potential temperature in (2).

A.5.2 Melting

The convection simulations provide a 3D grid of potential temperature (entropy)
within the box. To turn this into melting rate, the hydrous melting parametrisa-
tion of Katz et al. (2003) was used to calculate the expected degree of melting F
at each grid point assuming isentropic decompression melting to the given poten-
tial temperature and pressure at each grid point. The original parametrisation of
degree of melting in Katz et al. (2003) is given with pressure and temperature as
the thermodynamic variables. This parametrisation can be recast in terms of pres-
sure and entropy (or potential temperature) by numerically integrating the relevant
differential expressions. The differential expression for entropy when melting is

cp
dθ

θ
= dS = cp

dT

T
−

(
α

ρ

)
dP +∆S dF, (27)

where F is the degree of melting, ∆S is the specific entropy difference between the
two phases, and (

α

ρ

)
= F

αf

ρf
+ (1− F )

αs

ρs
. (28)

The Katz et al. (2003) parametrisation accounts for the different thermal expansiv-
ities αs, αf ; and densities ρs, ρf of the two phases (solid and liquid respectively),
but the specific heat cp is assumed identical for both phases. All parameter val-
ues used here are identical to those in Table 2 of Katz et al. (2003), with the
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exception of the specific entropy difference between the two phases which we set as
∆S = 400 J kg−1 K−1. The parametrisation provides the degree of melting F as
a function of temperature T and pressure P which can be expressed in differential
form as

dF =

(
∂F

∂T

)
P

dT +

(
∂F

∂P

)
T

dP. (29)

Given a parcel of material that is subsolidus at a given potential temperature θ and
depth z, (24) gives the relationship between temperature and depth (or pressure)
throughout the subsolidus region. Once the material crosses the solidus the rela-
tionship between temperature and pressure at constant entropy can be obtained by
numerically integrating equations (27), (28), and (29) with dS = 0. Knowing the
temperature and pressure then allows F to be calculated. From a series of constant
entropy integrations for different potential temperatures a parametrisation of F as
a function of entropy and pressure was generated. Using this entropy parametrisa-
tion, the grid of potential temperature and depth values in the box were converted
to a grid of F values. This grid of F was then converted to a melting rate Γ using

Γ =
∂F

∂t
+ v ·∇F (30)

where v is the velocity. The time derivative was calculated using a first-order ac-
curate finite difference approximation. The spatial gradient was calculated using
a second-order accurate finite difference approximation. The melting rate Γ was
vertically integrated to produce the plots shown in Figures 9 and 10. Only those
regions where the melt rate was positive (i.e. melting) were included in the vertical
integral. In the calculation of these figures, the advective term (v ·∇F ) was larger
by more than an order of a magnitude than the time dependent term (∂F/∂t), and
an excellent approximation to the melting rates can be obtained from the advective
term alone.

The calculation of melting rates were performed here as a postprocessing opera-
tion after running standard single-phase convection simulations. We assume that all
the melt that is generated moves to the surface, and that none remains in the source
region to freeze as the mantle material cools. It should be noted that this calcula-
tion neglects potentially important back-effects that melt can have on the flow, e.g.
arising from the buoyancy of the melt, and the thermal effects of the consumption
of latent heat. Indeed, in regions where melt is present, the approximation in (21)
can cease to be good approximation. However, the melting regions are only a small
proportion of the overall domain, and the changes in temperature due to melting
are small. For the free-rigid case with a lithospheric thickness of 80 km the average
temperature change in the regions undergoing melting is 10◦C, and the maximum
change in the whole box is 90◦C. Furthermore such changes in temperature occur
within the thermal boundary layer where heat is transported by conduction and
where the temperature variations are large whether or not melting occurs. The ef-
fect of the temperature changes resulting from melting on the large-scale dynamics
is therefore negligible.

There are other back-effects of melt extraction on the convective flow that have
been neglected. When melt is extracted from the mantle, the remaining residue
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has a different density than it had before the melt was extracted. There is thus
the potential for this depletion by melting to change buoyancy forces, and hence
the flow. However, the density changes in the residue are small. Even for 20%
melt extraction the relative density changes on depletion are on the order of -0.5%
(Schutt & Lesher, 2006), equivalent to a density change from temperature variations
of 125◦C.

Another potential back-effect that has been neglected arises from the effect of
volcanic loading on melt production rates. That changes in loading at the Earth’s
surface can influence melt production rates is well-known from studies that have
looked at the volcanic response to changes in ice cover in Iceland (Jull & McKenzie,
1996; Maclennan et al., 2002; Eksinchol et al., 2019). Beneath Iceland most melt
generation occurs in the upper 100 km of the mantle, where the upwelling rate, of
about 10 mm/a, is driven by the separating plates. The thickness of the ice on
Iceland reached about 3 km, equivalent to a thickness of rock of about 1 km, over
about 105 years, corresponding to an equivalent rock accumulation rate of 10 mm/a.
Melt generation therefore ceases during the construction of the icecap, and all the
melt that would normally have been generated during 105 years is instead released
when the ice melts, in about 103 years. The behaviour of melt generation within the
convecting region beneath the lithosphere is very different. For the free-rigid case
with a lithospheric thickness of 80 km shown in Figure 9, the upwelling rate of the
solid mantle where the melt generation rate is fastest is 27 mm/a. The accumulation
rate of melt at the surface is about 300 m/Ma, or 0.3 mm/a. This rate is therefore
about 1/100th of the upwelling rate, and will have no significant effect on the melt
generation rate. Moreover, volcanic loads at the surface will be eroded over time,
and their influence on the mantle beneath is further attenuated by the finite elastic
strength of the overlying lithosphere.
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Figure S1: (a) Gravity field for the Pacific from DIR-R5, with coefficients l = 2 set
to 0 and a filter applied, falling to 1/2 at 250 km, to remove the short wavelength
components. (b) Residual depths, averaged over 2◦ × 2◦ boxes (Crosby et al. 2006).
The dots show the locations of the resulting averages. Oblique Mercator projection
with axis 40◦N, −50◦E.
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Figure S2: Admittance and coherence from the same regions used for Figure 12
(c)-(f), calculated using Hoggard et al.’s (2017) estimates of residual depth rather
than those of Crosby et al. (2006).
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Figure S4: Estimate of the elastic thickness for S and W Arabia (see Figure S3) from
the admittance, taking the topography as input, gravity from Eigen6c as output.
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S3) from the admittance, taking the topography as input, gravity from Eigen6c as
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Figure S6: Estimate of the elastic thickness for Anatolia (see Figure S3) from the
admittance, taking the topography as input, gravity from Eigen6c as output.
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