7,032 research outputs found

    Low-Altitude Reconnection Inflow-Outflow Observations during a 2010 November 3 Solar Eruption

    Get PDF
    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion - an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from ~150-690 km/s with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal lightcurve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be 10^2 km/s with outflow speeds ranging from 10^2-10^3 km/s - indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops - presumably exiting the reconnection site.Comment: 31 pages, 13 figures, 1 table, Accepted to ApJ (expected publication ~July 2012

    Phase diagram of the one-dimensional Holstein model of spinless fermions

    Get PDF
    The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalisation group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the anti-adiabatic regime and is consistent with renormalisation group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.Comment: Minor changes. 4 pages, 4 figures. To appear in Physical Review Letters 80 (1998) 560

    Reconnection Outflows and Current Sheet Observed with Hinode/XRT in the 2008 April 9 "Cartwheel CME" Flare

    Full text link
    Supra-arcade downflows (SADs) have been observed with Yohkoh/SXT (soft X-rays (SXR)), TRACE (extreme ultra-violet (EUV)), SoHO/LASCO (white light), SoHO/SUMER (EUV spectra), and Hinode/XRT (SXR). Characteristics such as low emissivity and trajectories which slow as they reach the top of the arcade are consistent with post-reconnection magnetic flux tubes retracting from a reconnection site high in the corona until they reach a lower-energy magnetic configuration. Viewed from a perpendicular angle, SADs should appear as shrinking loops rather than downflowing voids. We present XRT observations of supra-arcade downflowing loops (SADLs) following a coronal mass ejection (CME) on 2008 April 9 and show that their speeds and decelerations are consistent with those determined for SADs. We also present evidence for a possible current sheet observed during this flare that extends between the flare arcade and the CME. Additionally, we show a correlation between reconnection outflows observed with XRT and outgoing flows observed with LASCO.Comment: 32 pages, 23 figures, Accepted for publication by the Astrophysical Journal (Oct. 2010

    Observations of the structure and evolution of solar flares with a soft X-ray telescope

    Get PDF
    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented

    Cosmic ray moderation of the thermal instability

    Get PDF
    We apply the Hermite-Bieler theorem in the analysis of the effect of cosmic rays on the thermal stability of an initially uniform, static background. The cosmic rays were treated in a fluid approximation and the diffusion coefficient was assumed to be constant in time and space. The inclusion of cosmic rays does not alter the criterion for the thermal stability of a medium subjected to isobaric perturbations. It does alter the criteria for the stability of a medium perturbed by small amplitude sound waves. In the limit of a high background cosmic ray pressure to thermal pressure ratio, the instability in response to high frequency sound waves is suppressed

    Entanglement Sharing and Decoherence in the Spin-Bath

    Get PDF
    The monogamous nature of entanglement has been illustrated by the derivation of entanglement sharing inequalities - bounds on the amount of entanglement that can be shared amongst the various parts of a multipartite system. Motivated by recent studies of decoherence, we demonstrate an interesting manifestation of this phenomena that arises in system-environment models where there exists interactions between the modes or subsystems of the environment. We investigate this phenomena in the spin-bath environment, constructing an entanglement sharing inequality bounding the entanglement between a central spin and the environment in terms of the pairwise entanglement between individual bath spins. The relation of this result to decoherence will be illustrated using simplified system-bath models of decoherence.Comment: 5 pages, 1 figure v2: 6 pages 2 figures, additional example and reference

    Hamiltonian formulation of nonlinear travelling Whistler waves

    No full text
    International audienceA Hamiltonian formulation of nonlinear, parallel propagating, travelling whistler waves is developed. The complete system of equations reduces to two coupled differential equations for the transverse electron speed uu and a phase variable ϕ=ϕpϕe\phi{=}\phi_p-\phi_e representing the difference in the phases of the transverse complex velocities of the protons and the electrons. Two integrals of the equations are obtained. The Hamiltonian integral H, is used to classify the trajectories in the (phi,w)(phi,w) phase plane, where phiphi and w=u2 are the canonical coordinates. Periodic, oscilliton solitary wave and compacton solutions are obtained, depending on the value of the Hamiltonian integral H and the Alfvén Mach number M of the travelling wave. The second integral of the equations of motion gives the position x in the travelling wave frame as an elliptic integral. The dependence of the spatial period, L, of the compacton and periodic solutions on the Hamiltonian integral H and the Alfvén Mach number M is given in terms of complete elliptic integrals of the first and second kind. A solitary wave solution, with an embedded rotational discontinuity is obtained in which the transverse Reynolds stresses of the electrons are balanced by equal and opposite transverse stresses due to the protons. The individual electron and proton phase variables phiephi_e and phipphi_p are determined in terms of phiphi and ww. An alternative Hamiltonian formulation in which ϕ~=ϕp+ϕe{\tilde\phi}{=}\phi_p+\phi_e is the new independent variable replacing x is used to write the travelling wave solutions parametrically in terms of ϕ~{\tilde\phi}

    A current driven instability in parallel, relativistic shocks

    Full text link
    Recently, Bell has reanalysed the problem of wave excitation by cosmic rays propagating in the pre-cursor region of a supernova remnant shock front. He pointed out a strong, non-resonant, current-driven instability that had been overlooked in the kinetic treatments, and suggested that it is responsible for substantial amplification of the ambient magnetic field. Magnetic field amplification is also an important issue in the problem of the formation and structure of relativistic shock fronts, particularly in relation to models of gamma-ray bursts. We have therefore generalised the linear analysis to apply to this case, assuming a relativistic background plasma and a monoenergetic, unidirectional incoming proton beam. We find essentially the same non-resonant instability noticed by Bell, and show that also under GRB conditions, it grows much faster than the resonant waves. We quantify the extent to which thermal effects in the background plasma limit the maximum growth rate.Comment: 8 pages, 1 figur

    Upper Critical Field in a Spin-Charge Separated Superconductor

    Full text link
    It is demonstrated that the spatial decay of the pair propagator in a Luttinger liquid with spin charge separation contains a logarithmic correction relative to the free fermi gas result in a finite interval between the spin and charge thermal lengths. It is argued that similar effects can be expected in higher dimensional systems with spin charge separation and that the temperature dependence of the upper critical field Hc2H_{c2} curve is a probe of this effect.Comment: 3 pages, postscript file (compressed and uuencoded
    corecore