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Phase Diagram of the One-Dimensional Holstein Model of Spinless Fermions
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The one-dimensional Holstein model of spinless fermions interacting with dispersionless phon
is studied using a new variant of the density matrix renormalization group. By examining vario
low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely
agrees with the predictions of strong coupling theory in the antiadiabatic regime and is consistent w
renormalization group arguments in the adiabatic regime. The Luttinger liquid parameters, determi
by finite-size scaling, are consistent with a Kosterlitz-Thouless transition. [S0031-9007(98)06342-X
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The challenge of understanding superconductivity
fullerenes, bismuth oxides, and the high-Tc cuprates has
renewed interest in models of interacting electrons a
phonons [1]. Unlike conventional metals these materia
are not necessarily in the weak-coupling regime whe
perturbation theory can be used or the strong-coupli
regime in which a polaronic treatment is possible [1
Neither are they necessarily in the adiabatic regime
which characteristic phonon energies are much less th
characteristic electronic energies. This challenge h
led to numerical studies of the Holstein (or molecula
crystal) model of electrons interacting with dispersionle
phonons in infinite dimensions, in two dimensions, in on
dimension, and on just two sites (see the references
[1,2]). The one-dimensional case is important becau
of the wide range of quasi-one-dimensional materia
which undergo a Peierls or charge-density-wave (CDW
instability due to the electron-phonon interaction. Mo
theoretical treatments assume the adiabatic limit and tr
the phonons in a mean-field approximation. However,
has been argued that in many CDW materials the quant
lattice fluctuations are important [3].

In this Letter we present a study of the one-dimension
Holstein model of spinless fermions at half-filling usin
the density matrix renormalization group (DMRG). Thi
model is particularly interesting because at a finite fermio
phonon coupling there is a quantum phase transition fro
a Luttinger liquid (metallic) phase to an insulating phas
with CDW long-range order [4,5]. This illustrates how
quantum fluctuations can destroy the Peierls state. T
Hamiltonian is
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whereci destroys a fermion on sitei, ai destroys a local
phonon of frequencyv, t is the hopping integral,g is
the fermion-phonon coupling, and a periodic chain ofN
sites is assumed. The phase transition occurs at a crit
coupling gc separating metallic (0 # g # gc) and CDW
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insulating phases (g . gc) [4,5]. In the strong coupling
limit ( g2 ¿ vt) (1) can be mapped onto the anisotropic
antiferromagnetic Heisenberg (XXZ) model [4] which is
exactly soluble. The transition occurs at the spin isotrop
point and is of the Kosterlitz-Thouless (KT) type, and the
Luttinger liquid parameters can be found in the metalli
phase [2].

The phase diagram of (1) over a wide range o
adiabaticity parameters (0.05 # tyv # 20) is shown in
Fig. 1. A new variant [6] of the DMRG method [7–10]
is used to determine the energy of low-lying excitation
to a far greater precision than previous quantum Mon
Carlo (QMC) studies [2,4]. Finite-size scaling (FSS) of a
number of energy gaps permits the accurate determinati
of gc and the Luttinger liquid parameters.

FIG. 1. Zero temperature phase diagram of the one
dimensional Holstein model of spinless fermions at half-filling
For small fermionic-phonon couplingg the system is a
Luttinger liquid with parameters that vary with the coupling.
For large g the system has an energy gap and long-rang
charge-density-wave order. The solid diamonds denote t
phase boundary from this DMRG study. The systemati
errors are smaller than the diamonds. The results of previo
quantum Monte Carlo studies are denoted by squares [4] a
triangles [2]. The dotted line is the phase boundary from
strong coupling theory [4] and the dashed line is defined b
v  DMF (whereDMF ; 8te2ptvyg2

is the mean-field energy
gap) and is the approximate location of the phase bounda
predicted by a two-cutoff renormalization group scheme [15].
© 1998 The American Physical Society 5607
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The study of fermion-boson models such as (1) b
exact diagonalization or the DMRG presents a challen
because there are an infinite number of phonon quant
states on each site. Caron and Moukouri have stud
the XY spin Peierls and free acoustic phonon models [
on open chains using a conventional DMRG algorithm
The simple truncation of the phonon Hilbert space use
in these calculations can require an excessively lar
number of states, to the extent where the effort expend
in representing a single site becomes comparable
that expended in representing a block. This becom
important when trying to study periodic systems (whic
are more useful for FSS studies) where an extra site
usually added to avoid direct interactions between block
Jeckelmann and White devised a scheme that maps bos
onto fermions which they applied to the polaron problem
(a single electron interacting with the phonons) in one an
two dimensions [9]. A more promising method, which
dramatically reduces the number of states required
represent a site, has been used to examine small (6 s
half-filled Holstein systems using exact diagonalizatio
[10]. We have developed a somewhat similar DMRG
algorithm which is designed to solveperiodic systems
with a large number of degrees of freedom per site. T
details of the method will be published elsewhere [6]—
here we concentrate on the results for (1).

The good quantum numbers used are the total fermi
numberN̂ ;

PN
i1 c

y
i ci, and, for the neutral case (1

2 -filled
band; N̂  Ny2), the parity (particle-hole) operator̂P :
ci ° s21dic

y
i ; ai ° 2ai. The energies calculated are

the ground state energyEG ; E0sN̂  Ny2, P̂  1d, the
charge gapDch ; E0sN̂  Ny2 6 1d 2 EG , and the “1-
photon” and “2-photon” gaps (the two lowest neutral ex
citations [11]) D1 ; E0sN̂  Ny2, P̂  21d 2 EG and
D2 ; E1sN̂  Ny2, P̂  1d 2 EG . A number of accu-
racy checks were performed: The DMRG reproduce
exact results in the noninteracting and strong-couplin
limits, and the DMRG results agree with QMC results fo
systems of up toN  16 sites [2] within error bars. The
DMRG accuracy is determined by the parameterm—the
number of density matrix eigenstates retained per bloc
Table I lists convergence results forDch, along with the
QMC results [2]. The DMRG errors, being systemati
rather than statistical, are 2 to 3 orders of magnitud
smaller than the QMC errors.

Typical FSS plots of the various energy gaps are show
in Fig. 2 for the metallics g , gcd and insulatings g .

gcd phases. In the metallic phase the gaps vanish linea
with 1yN as N ! `, with D1 lying aboveDch for large
N . In the insulating phaseD1 lies below Dch, and Dch
and D2 approach nonzero values asN ! ` while D1

rapidly tends to zero, the stateE0sN̂  Ny2, P̂  21d
being asymptotically degenerate with the ground state
this phase.

In the QMC studies [2,4] the critical pointgc was de-
termined as the point at which an order parameter or t
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TABLE I. Convergence of the charge gapDch with the
DMRG truncation parameterm for various system sizesN
using parameterst  v and g  1.5v. QMC results [2] are
included for comparison.

m N  4 N  8 N  16 N  32

26 0.4110 0.1971 0.1021 0.055 04
36 0.4110 0.1971 0.1004 0.052 44
48 0.4110 0.1971 0.1002 0.051 48
66 0.4110 0.1971 0.1002 0.051 17
78 0.4110 0.1971 0.1001 0.051 03
94 0.4110 0.1971 0.1001 0.050 99

QMC 0.416(4) 0.200(9) 0.06(3) · · ·

charge gapDch becomes nonzero. However, in a KT
transition these quantities behave asDch , e2As g2gcd21

,
and there are nonlinear corrections to FSS which mak

FIG. 2. Finite-size scaling of the different energy gaps in the
(a) Luttinger liquid and (b) insulating phases. The charge
gap (Dch) and 1- and 2-photon gaps (D1 and D2) are plotted
as functions of the inverse lattice size1yN for t  v and
(a) g  1.5v and (b) g  1.75v. Also shown in case (a)
is Dch as calculated using QMC [2] (solid diamonds with error
bars). In (a) the dashed lines are straight lines through th
origin, the slope of which can be used to extract the Luttinge
liquid exponentKr (see Fig. 3). In (b) the dashed line is a
guide for the eye. The differences between the two phase
are seen in the following: (i) The relative size ofDch and
D1 is opposite for the two phases. (ii) In the limitN ! `
the gaps extrapolate to zero (a nonzero value) in the Luttinge
liquid (insulating) phase. The inset of (a) shows the differenc
D1 2 Dch as a function of the coupling for variousN. The
critical coupling gc is determined as the value at which this
difference vanishes in the limitN ! `.
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FIG. 3. Coupling dependence of the Luttinger liquid param
ters ur (charge velocity) andKr (correlation exponent) for the
caset  0.1v. The diamonds and stars are the values ofKr

calculated from the finite-size scaling of the energy gapsDch
and D1, respectively. The solid triangles are theKr values
determined from (2). The solid curves are the results of stron
coupling theory [2].

the precise determination ofgc very difficult by this
method. Our method of determininggc is inspired by
work on the frustrated Heisenberg model [12] wher
the transition point was determined by the crossover
singlet and triplet gaps. It is known that KT transi
tions have a hidden SUs2d symmetry [13]. We hypothe-
size that atg  gc, the statesE0sN̂  Ny2 6 1d and
E0sN̂  Ny2, P̂  21d form a degenerate triplet in the
thermodynamic limit. Plots of the differenceD1 2 Dch

are included in the inset of Fig. 2 for variousN . A
crossover pointgcsNd is defined as theg value at which
D1  Dch. gcsNd, listed in Table II for various values of
tyv, approachesgc asN ! ` [14]. The combined errors
(DMRG truncation, discretization and fitting ing, and ex-
trapolation toN  `) are estimated to be less than 5%.

The resulting phase boundary is shown in Fig. 1, alon
with the two QMC calculations [2,4], and the resul
of strong-coupling theory [4] which becomes exact a
t ! 0. The DMRG results agree well with the strong
coupling curve fortyv , 0.2. For larget the results lie
close to the curve defined byv  DMF ; 8te2ptvyg2

.
This curve was predicted to be the approximate pha
boundary fort . v within a two-cutoff renormalization
scheme, whereDMF is the mean-field energy gap [15]. A
saddle-point expansion about the mean-field solution [1
suggests that there is a first-order transition forv , DMF .

We next investigate the nature of the transition an
the Luttinger liquid parameters in the metallic phases0 #
TABLE II. Convergence of the crossover pointgcsNdyv, determined byDch  D1, with the
system sizeN for various hopping parameterst.

N 4 8 16 32 64 128 256

t  0.1v 2.0878 2.0911 2.0920
t  v 1.087 1.528 1.591 1.608 1.613

t  10v 2.220 2.649 2.765 2.788
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g # gcd. For a Luttinger liquid of spinless fermions,EG

scales according toEG

N , e` 2
pur

6N2 [17], wheree` is the
bulk ground state energy density andur is the charge
velocity. From conformal field theory [18] the scalin
forms for the gaps areDch , pur

2KrN andD1, D2 , 2purKr

N ,
where Kr is the correlation exponent. The crossov
method of determininggc is equivalent to the assumptio
that Kr  1

2 at g  gc; i.e., the transition is of the KT
type [19]. In Fig. 3 ur (determined from the FSS o
EG) andKr (the values determined from the FSS of bo
Dch andD1) are shown as functions ofgyv for the case
t  0.1v. The ur values agree very well with strong
coupling theory. The agreement forKr is not as good,
due to the presence of nonlinear correction terms to
energy gap scaling forms.

A theory for these nonlinear correction terms h
been developed for the critical case [12,20], name
Dch , 2pur

N f 1
4Kr

1
A

logN 1 . . .g and D2 , 2pur

N fKr 2
3A

logN 1 . . .g, whereA is a constant andKr  1y2. By
taking the combination

3Dch 1 D2 ,
2pur

N

∑
3

4Kr

1 Kr 1 . . .

∏
, (2)

the leading nonlinear correction is canceled atg  gc, the
next correction beingOs 1

slogNd2 d. For t  v andg  gc,
Kr  0.52 is obtained if (2) is used to determineKr . In
comparison, values of 0.59 and 0.42 are obtained from
scaling ofDch andD1, respectively. It might be expecte
that (2) should give better results forKr around the criti-
cal point than the scaling ofDch or D1. The resulting
values, plotted in Fig. 3, are in good agreement w
strong-coupling theory. To check the consistency of
transition with a KT transition the value ofg at whichKr

[calculated using (2)] equals12 is listed in Table III. It can
be seen that the transition is consistent with a KT tran
tion throughout the phase diagram.

Finally, we consider the question of phonon softeni
and the mixing of phonon and fermion excitations. Fi
ure 4 shows the FSS of the energy gaps for a meta
case (g , gc) with large hoppingt  5v. While Dch
is linear in 1yN , D1 and D2 are highly nonlinear. This
is because the lowest fermionic and bosonic, neutral
citations have the same quantum numbers, those ofD1

and D2: The noninteracting fermionic gap4pt
N only be-

comes less than the bare phonon frequencyv for N ø
4pt
v ø 60, and thusD1 andD2 are predominantly 1- and
5609
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TABLE III. Transition point gc (as determined by the crossover ofDch andD1) andgp, the
value ofg at whichKr  1

2 [whereKr is calculated from (2)], for various hopping parameters
t. The agreement betweengc andgp is consistent with the transition being of the KT type.

tyv 0.05 0.1 0.5 1 5 10

gcyv 2.297(2) 2.093(2) 1.63(1) 1.61(1) 2.21(3) 2.79(5)
gpyv 2.299 2.102 1.64 1.62 2.27 2.89
s
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2-phonon excitations for smallN (flat in 1yN), becom-
ing 1- and 2-particle-hole excitations (linear in1yN)
for only large N. Note that for these parameter values
the phonons are softened—the renormalized phonon fr
quency is around half the bare phonon frequencyv. It
would be interesting to calculate the 1-phonon Green’
function to see if the phonons soften completely at th
transition. The 2-phonon Green’s function could be use
to study phonon anharmonicity.

In conclusion, we have shown that, using a new varian
of the DMRG, the phase boundary of the one-dimensiona
Holstein model of spinless fermions can be accurately de
termined. The transition is consistent with a KT transition
over a wide range of adiabaticity. In the antiadiabatic
limit the phase boundary and Luttinger liquid parameter
agree well with strong-coupling theory. In the adiabatic
limit the phase boundary lies close to a curve predicted b
renormalization group arguments. Challenges that rema
include the following: (1) Finding a method of canceling
nonlinear corrections to scaling, and hence accurately ca
culating the correlation exponentKr , in the whole of the
Luttinger liquid regime; (2) developing a theory of FSS
when the conformally invariant field is coupled to a dis-
persionless field with a gap in order to explain the non
linear scaling in Fig. 4; and (3) a detailed investigation o
phonon softening and anharmonicity.

This work was supported by the Australian Researc
Council. We thank J. Voit, H. Eckle, E. Jeckelmann,
T. Xiang, H. Fehske, and V. Kotov for useful discussions

FIG. 4. The energy gapsDch, D1, and D2 as functions of
1yN for t  5v in a metallic caseg  2v. Dashed lines
are straight lines through the origin. The gapsD1 and D2
are not linear in1yN because in the adiabatic regime there
is strong mixing between fermionic and phonon excitations
For systems of less than 20 sites the lowest excitations wit
quantum numberŝP  61 and N̂  Ny2 are predominantly
1- and 2-phonon excitations.
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Calculations were performed at the New South Wale
Centre for Parallel Computing.
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