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Phase Diagram of the One-Dimensional Holstein Model of Spinless Fermions
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The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons
is studied using a new variant of the density matrix renormalization group. By examining various
low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and
agrees with the predictions of strong coupling theory in the antiadiabatic regime and is consistent with
renormalization group arguments in the adiabatic regime. The Luttinger liquid parameters, determined
by finite-size scaling, are consistent with a Kosterlitz-Thouless transition. [S0031-9007(98)06342-X]

PACS numbers: 71.10.Fd, 71.30.+h, 71.38.+i, 71.45.Lr

The challenge of understanding superconductivity ininsulating phasesg > g.) [4,5]. In the strong coupling
fullerenes, bismuth oxides, and the highcuprates has limit ( g > wt) (1) can be mapped onto the anisotropic,
renewed interest in models of interacting electrons an@ntiferromagnetic HeisenbergXZ) model [4] which is
phonons [1]. Unlike conventional metals these materialexactly soluble. The transition occurs at the spin isotropy
are not necessarily in the weak-coupling regime whergoint and is of the Kosterlitz-Thouless (KT) type, and the
perturbation theory can be used or the strong-couplingruttinger liquid parameters can be found in the metallic
regime in which a polaronic treatment is possible [1].phase [2].

Neither are they necessarily in the adiabatic regime in The phase diagram of (1) over a wide range of
which characteristic phonon energies are much less thadiabaticity parameter9.05 < /o = 20) is shown in
characteristic electronic energies. This challenge habig. 1. A new variant [6] of the DMRG method [7—10]
led to numerical studies of the Holstein (or molecularis used to determine the energy of low-lying excitations
crystal) model of electrons interacting with dispersionlesgo a far greater precision than previous quantum Monte
phonons in infinite dimensions, in two dimensions, in oneCarlo (QMC) studies [2,4]. Finite-size scaling (FSS) of a
dimension, and on just two sites (see the references inumber of energy gaps permits the accurate determination
[1,2]). The one-dimensional case is important becausef g. and the Luttinger liquid parameters.

of the wide range of quasi-one-dimensional materials
which undergo a Peierls or charge-density-wave (CDW) a4

instability due to the electron-phonon interaction. Most ‘}
theoretical treatments assume the adiabatic limit and treat
the phonons in a mean-field approximation. However, it 3 CDW Insulator /
has been argued that in many CDW materials the quantum >
lattice fluctuations are important [3]. > -

In this Letter we present a study of the one-dimensional 2 I
Holstein model of spinless fermions at half-filling using R s o
the density matrix renormalization group (DMRG). This - ﬁ,/’f{
model is particularly interesting because at a finite fermion- 1 b %
phonon coupling there is a quantum phase transition from
a Luttinger liquid (metallic) phase to an insulating phase Luttinger Liquid tw —
with CDW long-range order [4,5]. This illustrates how PL° o507 0.2 o.5 1 > 5 10 20
guantum fluctuations can destroy the Peierls state. ThEIG 1
Hamiltonian is he

g/w —

4
[

T

Zero temperature phase diagram of the one-
dimensional Holstein model of spinless fermions at half-filling.

N N For small fermionic-phonon couplingg the system is a
H = -1 Z(C;rcwl + Cj+lci) t w Za;rai Luttinger liquid with parameters that vary with the coupling.
i=1 i=1 For large g the system has an energy gap and long-range
N + 1 4 charge-density-wave order. The solid diamonds denote the
- gz<ci Ci 5)(01‘ + a;), (1)  phase boundary from this DMRG study. The systematic
i=1

errors are smaller than the diamonds. The results of previous
wherec; destroys a fermion on site a; destroys a local qyantlum Monte rf:ar(ljo Stléd'l‘?s are dﬁnmﬁd by bsqua(;es [‘#] and
phonon of frequencyw, ¢ is the hopping integralg is ~ liangdles [2]. The dotted line is the phase boundary from

. . L > strong coupling theory [4] and the dashed line is defined by
the fermion-phonon coupling, and a periodic chainhof = _ Amr (Where Ay = 8te~ /¢ is the mean-field energy

sites is assumed. The phase transition occurs at a criticghp) and is the approximate location of the phase boundary
coupling g. separating metallich(= g = g.) and CDW  predicted by a two-cutoff renormalization group scheme [15].
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The study of fermion-boson models such as (1) byTABLE I. Convergence of the charge gafi., with the
exact diagonalization or the DMRG presents a challeng®MRG truncation parametem for various system sizes/
because there are an infinite number of phonon quantulyfing parameters = » andg = 1.5». QMC results [2] are

states on each site. Caron and Moukouri have s'[udie'imlljded for comparison.

the XY spin Peierls and free acoustic phonon models [8] m N =4 N =38 N =16 N =32

on open chains using a conventional DMRG algorithm. 2g 0.4110 0.1971 0.1021 0.055 04
The simple truncation of the phonon Hilbert space used 36 0.4110 0.1971 0.1004 0.052 44
in these calculations can require an excessively large 48 0.4110 0.1971 0.1002 0.05148
number of states, to the extent where the effort expended66 0.4110 0.1971 0.1002 0.05117
in representing a single site becomes comparable to78 0.4110 0.1971 0.1001 0.05103

that expended in representing a block. This becomes94 0.4110 0.1971 0.1001 0.05099
important when trying to study periodic systems (whichQMC 0.416(4) 0.200(9) 0.06(3)

are more useful for FSS studies) where an extra site iS
usually added to avoid direct interactions between b|°CkScharge gapA., becomes nonzero. However, in a KT
Jeckelmann and White devised a scheme that maps bosopsnsition these quantities behave &g, ~ e~ Alg=g) "
onto fermions which they applied to the polaron problemynq there are nonlinear corrections to FSS which make
(a single electron interacting with the phonons) in one and
two dimensions [9]. A more promising method, which
dramatically reduces the number of states required to °-7
represent a site, has been used to examine small (6 site) ,
half-filled Holstein systems using exact diagonalization
[10]. We have developed a somewhat similar DMRG
algorithm which is designed to solvgeriodic systems 0.4
with a large number of degrees of freedom per site. The
details of the method will be published elsewhere [6]—
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here we concentrate on the results for (1). 0.2 &

The good quantum numbers used are the total fermion | Lo
numberd = 3V ¢l¢;, and, for the neutral casé-filled ' /,ﬁi;«*’"f @t=wo=1o
band; N = N/2), the parity (particle-hole) operatd? : = WS T3 R I R
¢i = (=1)'¢;;a; — —a;. The energies calculated are .
the ground state energyg = Eo(N = N/2,P = 1), the * A (b) =, g = 1750

charge gap\., = Eo(N = N/2 = 1) — Eg, and the “1- 0. A A
photon” and “2-photon” gaps (the two lowest neutral ex-
citations [11])A; = Eo(N = N/2,P = —1) — Eg and 0.3
A, =E (N =N/2,P=1) — Eg. A number of accu-

racy checks were performed: The DMRG reproduces o.»
exact results in the noninteracting and strong-coupling
limits, and the DMRG results agree with QMC results for . . T
systems of up t&v = 16 sites [2] within error bars. The ’ 2 "
DMRG accuracy is determined by the parameterthe . * YN —

number of density matrix eigenstates retained per block. e ) R ) 035
Table | lists convergence results far.,, along with the

; i~FIG. 2. Finite-size scaling of the different energy gaps in the
QMC results [2]. The DMRG errors, being systematic a) Luttinger liquid and (b) insulating phases. The charge

rather than statistical, are 2 to 3 orders of magnitud ap () and 1- and 2-photon gapa{ and A,) are plotted

smaller than the QMC errors. as functions of the inverse lattice siZ¢ N for + = w and
Typical FSS plots of the various energy gaps are showi) ¢ = 1.5« and (b) g = 1.75w. Also shown in case (a)

in Fig. 2 for the metallic(g < g.) and insulating(g > is A, as calculated using QMC [2] (solid diamonds with error

; ich li rs). In (a) the dashed lines are straight lines through the
g:) phases. In the metallic phase the gaps vanish linearl rigin, the slope of which can be used to extract the Luttinger

with 1/N a_sN - % with A, Iy_|ng aboveA,y for large liquid exponentK, (see Fig. 3). In (b) the dashed line is a
N. In the insulating phasd, lies below Acy, andAcy  guide for the eye. The differences between the two phases
and A, approach nonzero values a5— o while A are seen in the following: (i) The relative size &f; and
rapidly tends to zero, the statg(N = N/2,P = —1) A is opposite for the two phases. (i) In the limit —
being asymptotically degenerate with the ground state iff'® 9aps extrapolate to zero (a nonzero value) in the Luttinger
this phase. liquid (insulating) phase. The inset of (a) shows the difference
P . . . 1 — A., as a function of the coupling for varioug. The

In the QMC studies [2,4] the critical poid. was de- critical coupling g. is determined as the value at which this

termined as the point at which an order parameter or thdifference vanishes in the lim¥ — .

Energy Gap —
b
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0.5 1 1.5 2 g = g.). For a Luttinger liquid of spinless fermiongg
g/w— scales according té,ﬁ ~ €x — % [17], wheree., is the
0.9 bulk ground state energy density amg is the charge
velocity. From conformal field theory [18] the scaling
0.8} U 27u,K
| forms for the gaps ar@., ~ 5% andA;, Ay ~ —3—~,
0.7 b where K, is the correlation exponent. The crossover
o6 method of determining. is equivalent to the assumption
’ g that K, = % at g = g.; i.e., the transition is of the KT
0.5 g type [19]. In Fig. 3u, (determined from the FSS of
i Eg) andK, (the values determined from the FSS of both
0.4 = A, andA,) are shown as functions @f/ @ for the case

FIG. 3. Coupling dependence of the Luttinger liquid paramet = 0.lw. Theu, values agree very well with strong-
.3 upli utti iqui - ; ;
tersu, (charge velocity) and, (correlation exponent) for the coupling theory. The agreement féf, is not as good,

caser = 0.lw. The diamonds and stars are the vaiuespf due to the presence of nonlinear correction terms to the
calculated from the finite-size scaling of the energy gAps  €nergy gap scaling forms.

and A;, respectively. The solid triangles are tlig, values A theory for these nonlinear correction terms has

determined from (2). The solid curves are the results of strongheen developed for the critical case [12,20], namely

coupling theory [2]. 2ru, ¢ 1 A 2mu, ¢ ’
ping y [2] Ach’v%[mﬁ‘m‘i'...] and A2~7;/u[Kp—

+ ...], whereA is a constant an&k, = 1/2. By

g the combination

3A
the precise determination of. very difficult by this @
method. Our method of determining. is inspired by takin
work on the frustrated Heisenberg model [12] where
the transition point was determined by the crossover of
singlet and triplet gaps. It is known that KT transi- ) ) .
tions have a hidden SB) symmetry [13]. We hypothe- the leading ponllngar corrlecnon is canceleg at g, the
size that atg = g., the statesEy(N = N/2 = 1) and  Next correction bein@ (i557). Fors = w andg = g,
Eo(N = N/2,P = —1) form a degenerate triplet in the K, = 0._52 is obtained if ?2) is used to determ_mkép. In
thermodynamic limit. Plots of the differenck; — A, ~ comparison, values of 0.59 and 0.42 are obtained from the
are included in the inset of Fig. 2 for varioug. A  Scaling ofA., andA,, respectively. It might be expected
crossover poing.(N) is defined as thg value at which that (2) should give bet'ter results far, around the crm-
Ay = Ach. g(N), listed in Table Il for various values of €&l point than the scaling o, or A;. The resulting
t/w, approacheg. asN — o« [14]. The combined errors values, plott_ed in Fig. 3, are in good agreement with
(DMRG truncation, discretization and fitting jn and ex-  Strong-coupling theory. To check the consistency of the
trapolation toN = o) are estimated to be less than 5%. {ransition with a KT transition the value gfat whichk,

The resulting phase boundary is shown in Fig. 1, a|0n€{;:alculated using (2)] equalsis listed in Table Ill. It can
with the two QMC calculations [2,4], and the result b€ seen that the transition is consistent with a KT transi-
of strong-coupling theory [4] which becomes exact aglion throughout the phase diagram.

t — 0. The DMRG results agree well with the strong- Finally, we consider the question of phonon softening
coupling curve forr/w < 0.2. For larger the results lie and the mixing of phonon and fermion excitations. Fig-
close to the curve defined by = Ayp = gte—mtw/g’  ure 4 shows the FSS of the energy gaps for a metallic
This curve was predicted to be the approximate phasgase € < gc) with large hoppingr = 5w. While Ay
boundary fort > w within a two-cutoff renormalization is linear in1/N, A, and A, are highly nonlinear. This
scheme, wherd yr is the mean-field energy gap [15]. A is because the lowest fermionic and bosonic, neutral ex-
saddle-point expansion about the mean-field solution [16fitations have the same quantum numbers, thosa,of
suggests that there is a first-order transitiondor- Ayr.  and A,: The noninteracting fermionic gag- only be-

We next investigate the nature of the transition andcomes less than the bare phonon frequeacyor N ~

T

the Luttinger liquid parameters in the metallic ph&e= 7L~ 60, and thusA; and A, are predominantly 1- and

w

27U,

3Ac, + Ay ~

[% + K, + } @)

TABLE Il. Convergence of the crossover poi(N)/w, determined byA., = A4, with the
system sizeV for various hopping parameters

N 4 8 16 32 64 128 256
t=01w 2.0878 2.0911 2.0920
t=uw 1.087 1.528 1591 1.608 1.613
t = 10w 2.220 2.649 2.765 2.788
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TABLE Ill. Transition pointg. (as determined by the crossover&f, andA;) andg”, the
value ofg at whichK, = 1 [wherek,, is calculated from (2)], for various hopping parameters
t. The agreement between and g™ is consistent with the transition being of the KT type.

t/w 0.05 0.1 0.5 1 5 10
g/ 2.297(2) 2.093(2) 1.63(1) 1.61(1) 2.21(3) 2.79(5)
¢/ w 2.299 2.102 1.64 1.62 2.27 2.89

2-phonon excitations for smal (flat in 1/N), becom- Calculations were performed at the New South Wales
ing 1- and 2-particle-hole excitations (linear iy N)  Centre for Parallel Computing.

for only large N. Note that for these parameter values
the phonons are softened—the renormalized phonon fre-
quency is around half the bare phonon frequeacy It
would be interesting to calculate the 1-phonon Green’s “Email address: phirb@newt.phys.unsw.edu.au
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