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The monogamous nature of entanglement has been illustrated by the derivation of entanglement-sharing
inequalities—bounds on the amount of entanglement that can be shared among the various parts of a multi-
partite system. Motivated by recent studies of decoherence, we demonstrate an interesting manifestation of this
phenomena that arises in system-environment models where there exists interactions between the modes or
subsystems of the environment. We investigate this phenomenon in the spin-bath environment, constructing an
entanglement-sharing inequality bounding the entanglement between a central spin and the environment in
terms of the pairwise entanglement between individual bath spins. The relation of this result to decoherence
will be illustrated using simplified system-bath models of decoherence.
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While entanglement is argued to be the distinguishing fea-
ture of quantum computers, responsible for their powerf1g, it
is also the source of one of the major obstacles in their con-
struction.Decoherence, the process by which a quantum su-
perposition state decays into a classical, statistical mixture of
states, is caused by entangling interactions between the sys-
tem and its environmentf2g. Somewhat paradoxically, the
quantum entanglement between a system and its environ-
ment induces classicality in the system. While it is still a
contentious topic as to whether quantum computation will be
possible in the face of decoherence, Zurekf3g has demon-
strated that decoherence is necessary to facilitate the mea-
surement of a quantum system. Understanding decoherence
lies at the heart of measurement, quantum information pro-
cessing, and, more fundamentally, the transition from the
quantum to the classical world.

The road to studying decoherence by explicitly modeling
system-environment interactions has led to simple models of
the quantum environment. Environments can be modeled as
either baths of harmonic oscillatorsf4g or spinsswith spin 1

2d
argued to represent distinct types of environmental modes
f5g. The simplest system-environment models consist of a
central spinsor qubitd coupled to the environment—i.e., the
spin-boson modelf4g—which has applications to the deco-
herence of qubits for quantum information processing.

Decoherence of a spin-1
2 particle at low temperatures may

be conveniently modeled by the “central spin” model, which
couples a central spin-1

2 particleS to a spin bathB of N spin-
1
2 particles. A typical Hamiltonian for this model may be
written in the form

H = HS + HB + HSB, s1d

whereHS andHB are the internal Hamiltonians of the central
spin and spin bath, respectively, andHSB is the coupling
term. Denote the state of the system-environment at timet by

rSBstd. Initially at t=0 we take the central spinS to be in a
pure state, uncorrelated with the bath. That is,

rSBs0d = uclSkcu ^ rBs0d s2d

for some initial state of the bathrBs0d. Typically rBs0d is
taken to be a thermal state of the HamiltonianHB or, at low
temperatures, the ground state.

As the system evolves underH the central spin becomes
coupled to the bath, and its reduced density matrixrSstd at
later times is no longer pure. The central spin is said to have
decohered, and the amount of decoherence is typically quan-
tified by the von Neumann entropy of its reduced density
matrix S(rSstd).

More recently interactions between modes within the bath
itself have been consideredf6–8g, which allow for appre-
ciable correlations, such as entanglement, to arise between
the modes of the bath.

In f6g, Tessieri and Wilkie introduced coupling terms be-
tween spins in the bath HamiltonianHB and, taking the ini-
tial state of the bath as a thermal state ofHB, found that this
resulted in a suppression of the decoherenceS(rSstd). The
amount of suppression increased as the effective energy scale
of HB increased relative to that ofHSB, ultimately to the
point where decoherence was negligible even after long
times. This is somewhat surprising, as even small couplings
HB would usually be expected to eventually result in com-
plete decoherence of the central spin. In this article we aim to
demonstrate that this suppression effect may be understood
to be a consequence ofentanglement sharingand that it will
be common to any central spin whose environment maintains
appreciable internal entanglement while evolving in time.

A simple example of such a system is a single spin in a
bath of spins with antiferromagnetic interactions between
them. In the absence of the spin the ground state of theN
bath spins would be something like a spin singlet which is
highly entangled. If the single spin interacts antiferromag-
netically with the bath spins, all it can do is flip individual
spins in the bath. The total spin has to be conserved and
hence will have a value of order 1/2. If the bath is initialized
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in such a state, it will remain highly entangled throughout its
interaction with the system spin.

Entanglement sharing refers to a striking difference be-
tween classical and quantum correlations—the latter may not
be shared arbitrarily among several observables. The connec-
tion with decoherence is readily seen in a system of three
spin-12 particles, labeledS, B1, and B2, respectively. It has
been shownf9g that entanglement betweenB1 andB2 limits
the individual and collective entanglement they may have
with S. If a state of the systemrstd is evolving under a
Hamiltonian such as Eq.s1d and, moreover, if the “bath”
B1B2 maintains appreciable entanglement, then it follows
that there is a restriction on the entanglement between the
central spinS andB1B2. For pure states this equivalent to a
restriction on the amount thatS may decohere. For mixed
states we must also bound the classical correlations between
S and B1B2 which may be done using a recent result of
Koashi and Winterf10g. Entanglement betweenB1 and B2
thus suppresses all correlations between the central spin and
the bath.

The situation becomes far more complicated for spin
baths ofN particles. The main difficulty is the plethora of
different types of entanglement which exist in these baths
and the absence of good entanglement measures for them. To
overcome this difficulty we will assume that there is some
symmetry in the HamiltoniansHS andHSB. If the initial bath
staterBstd is taken to be a thermal or eigenstate ofHB, then
the reduced state of the bathrBstd at later times will also
obey this symmetry. For example, the simplest case is that
considered by Tessieri and Wilkie whereHSB and HB are
completely symmetric. Here the pairwise entanglement be-
tween any two bath spins is the same, allowing us to quantify
the bath entanglement by a single parameter.

In this paper we will obtain an entanglement-sharing in-
equality relating the entanglement between a central spin and
a completely symmetric spin bath to the pairwise entangle-
ment in the bath. This inequality is applicable to both pure
and mixed states, and is sufficient to restrict decoherence
where rSBstd is pure. We will then illustrate this damping
effect in a simple model of decoherence originally proposed
by Zurekf3g and the Tessieri-Wilkie modelf6g. To conclude
we will discuss possible extensions of this result to the
bounding of classical correlations between the central spin
and the bath.

To begin, let S be a central spin-12 particle and B
=B1B2¯BN a completely symmetric spin bath. As indicated
above, the symmetry implies that the entanglement between
any pair of bath spinsBi ,Bj is the same, allowing us to use a
single parameter as a measure of bath entanglement. This
entanglement will be called theintrabath entanglement,
while the entanglement between the central spin and the bath
will be called thesystem-bathentanglement. To quantify
these we will make use of a measure known as thetanglef9g
whose definition we now briefly recall. For the reduced den-
sity matrix rBiBj

of a pair of bath spinsBi ,Bj define the
spin-flipped density matrix

r̃BiBj
= ssy ^ sydrBiBj

* ssy ^ syd. s3d

The asterisk denotes complex conjugation in the standard
basis andsy is the PauliY matrix. The matrixrBiBj

r̃BiBj
can

be shown to have real non-negative eigenvalues, and we
write their square roots in decreasing order asl1,l2,l3,l4.
The tangle betweenBi andBj is then defined as

tBiuBj
= smaxh0,l1 − l2 − l3 − l4jd2. s4d

This expression is for two spin-1
2 particles; however, the

tangle between the central spinS and the bathB is also well
defined for pure states of the combined system. The key
point is that, becauseS is a spin-12 particle, only two dimen-
sions of the bath-state space are required to expand the pure
state in its Schmidt decomposition. The bath may therefore
be imagined as a single spin-1

2 particle, with the tangle de-
fined as before. Equations4d can be further simplified for
pure states so that the system-bath tangle is

tSuB = 4 detrS. s5d

For further properties of the tangle, in particular its validity
as an entanglement measure, we refer the reader tof9,11g.

Since all the pairwise intrabath tangles are the same, we
write tB;tBiuBj

for all i , j . Our aim is to show how thistB

constrains the system-bath tangletSuB. We will first consider
the simplest case of pure states for anN=2 bath, since much
is known about states of three spin-1

2 particles. Intuition built
in this case will enable us to derive a related inequality for
pure states of arbitrary sized baths.

For the two-spin bath, it was shown inf9g and f12g that
there are two distinct types of entanglement betweenS and
B1B2. S can be entangled with the spinsB1 andB2 individu-
ally or with the bathB1B2 as a whole. The latter type is
quantified by thethree-tanglewhich we denote bytSuB1uB2

.
The total entanglement betweenS andB can now be written
as

tSuB = tSuB1
+ tSuB2

+ tSuB1uB2
. s6d

The three-tangle is invariant under permutations of the three
spins and may be written alternatively as

tSuB1uB2
= tSuB1B2

− tSuB1
− tSuB2

, s7d

tSuB1uB2
= tB1uSB2

− tB − tB1uS. s8d

A simple consequence of this, together with the fact that the
tangle is a positive quantity less than or equal to 1, is

tB + tSuB1uB2
ø 1. s9d

This inequality says that the intrabath entanglement plus the
three-tangle part of the system-bath entanglement is always
less than 1. On the other hand, the sum oftB+tSuB1

+tSuB2
can

be greater than 1—it can take any value up to and including
4/3 f12g. This suggests that intrabath entanglement has a
stronger damping effect on the three-tangle component of
tSuB than it does on the pairwise tangle component. We will
therefore assume that, for a fixed intrabath tangle, a maxi-
mum system-bath entanglement is obtained when
tSuB1uB2

=0—that is, when it is composed entirely of the pair-
wise components in Eq.s6d.
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States of theSB1B2 system withtSuB1uB2
=0 are equivalent

under local unitary operations to so-calledW-class states of
the form

ucl = au↑lSu↑↓lB + bu↑lSu↓↑lB + cu↓lSu↑↑lB + du↑lSu↑↑lB,

s10d

where a,b,c,d are real and non-negativef12,13g and a2

+b2+c2+d2=1. The tensor factors in each term refer to the
state of the central spin and of the two bath spins, respec-
tively. It is a simple matter to calculate the relevant tangles
from Eqs.s4d and s5d:

tB = 4a2b2, s11d

tSuB = 4sa2 + b2dc2. s12d

We will solve the equivalent and, as it turns out, slightly
easier problem of maximizingtB for fixed tSuB=T. That is,
we must maximize

gsa,b,c,dd = 4a2b2 s13d

subject to the constraints

F1sa,b,c,dd = 4sa2 + b2dc2 − T = 0, s14d

F2sa,b,c,dd = a2 + b2 + c2 + d2 − 1 = 0. s15d

This can be solved by the method of Lagrange multipliers,
and we find that the maximumtB is given by

tB =
1

4
s1 +Î1 − tSuBd2. s16d

The corresponding entanglement-sharing inequality for the
system-bath and intrabath tangles is then

tSuB ø 5 1, tB ø
1

4
,

4sÎtB − tBd, tB ù
1

4
.6 s17d

For values of the intrabath tangle less than 1/4 the system
and the bath may be maximally entangled. AstB increases,
however, we find thattSuB falls in an approximately linear
fashion, and is 0 when the intrabath tangle is at a maximum.
This confirms our expectation that strong quantum correla-
tions in the environment limit decoherence effects, at least
for pure states of the combined system.

We saw above that the three-tangle component of the
system-bath entanglement was more strongly limited by the
intrabath entanglement than the pairwise components
tSuB1

,tSuB2
. In the case of anN-spin bath it seems reasonable

that we should expect the same, this time potentially for
three-party and other higher-order quantum correlations be-
tweenS and the bath. We will therefore assume that analogs
of the W-class states are able to achieve maximum system-
bath entanglement for a given intrabath entanglement. An
inequality similar to Eq.s17d follows from this assumption
and has been confirmed numerically for small values ofN.

An analog of aW-class state should ideally be one where

the system is only entangled with each of the bath spins
individually. We will use a generalization of the statess10d
given by

uWl = a1u↑lSu↑↑ ¯ ↑↑↓lB + a2u↑lSu↑↑ ¯ ↑↓↑lB + ¯

+ aNu↑lSu↓↑ ¯ ↑↑↑lB + cu↓lSu↑↑ ¯ ↑↑↑lB

+ du↑lSu↑↑ ¯ ↑↑↑lB s18d

for real ai ,c,d whereoi=1
N ai

2+c2+d2=1. Hereai is the coef-
ficient of the state where theith bath spin is down. From Eqs.
s4d and s5d we find that the tangle between any pair of bath
spins is given by

tBiuBj
= 4ai

2aj
2, s19d

and the tangle between the central spin and the bath is given
by

tSuB = 4c2o
i=1

N

ai
2. s20d

The symmetry constraint implies thatai =aj =a for all i , j
øN, and it follows that

tB = tBiuBj
= 4a4, s21d

tSuB = 4Na2c2. s22d

Fixing tSuB=D we can maximizetB as we did for theN=2
case and subsequently obtain a maximumtB at

tB =
1

N2s1 +Î1 − tSuBd2, s23d

with the corresponding entanglement-sharing inequality

tSuB ø 5 1, tB ø
1

N2 ,

Ns2ÎtB − NtBd, tB ù
1

N2 .6 s24d

This inequality is identical to Eq.s17d up to a dimensional
scaling. Note that the maximum possible pairwise tangle for
a symmetric bath ofN spin-12 particles has been shown to be
4/N2 f14g and that the system-bath tangle falls to 0 for this
value oftB.

Of course, we have only demonstrated this inequality for
theW-class states, Eq.s18d. To verify the inequality numeri-
cally for small values ofN we calculatedtSuB and tB for
random states having the appropriate bath symmetry. A
sample size of 13107 was used, and to reduce the sample
space we used the generalized Schmidt decompositionf13g.
No violations of Eq.s24d were found forNø5.

The extension of Eq.s24d to mixed statesr, where the
formula s5d is no longer valid is straightforward. Given a
pure-state decompositionr=oipiucilkciu we may define the
average system-bath tangle by
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t̄SuBsrd = o
i

pitSuBsucild. s25d

The minimum t̄SuBsrd over all pure- state decompositions
hpi , ucilj of r can then be used to quantify the quantum cor-
relations between the system and the bath.

The concavity of Eq.s23d allows us to write

1

N2f1 +Î1 − tSuB
minsrdg2 ù o

i

pitBsucild. s26d

On the other hand, the tangle is convex, so we have
oipitBsucildùtBsrd and thus obtain the inequality

1

N2f1 +Î1 − tSuB
minsrdg2 ù tBsrd, s27d

which we can be inverted to obtain the entanglement-sharing
inequality for mixed states.

One simple model of decoherence where the inequality
s24d is immediately applicable is an exactly solvable model
introduced by Zurekf3g and recently used to investigate the
structure of the decoherence induced by spin environments
f15g. The system is always in a pure state, so there are no
classical correlations and a bound on the system-bath en-
tanglement is a bound on the decoherence.

The Hamiltonian of this model, after applying the com-
plete symmetry constraint, is written

HSB =
1

2
go

k=1

N

sz
ssdsz

sBkd. s28d

It is possible to analytically solve this model to give a good
illustration of how the decoherence of the central spin—as
quantified by the decay of the off-diagonal elements of the
reduced density operator of the systemf15g—is suppressed
by the presence of entanglement between the bath spins.
Starting with a separable system-bathsSBd state

uCSBl = sxu↓lS + gu↑lSd ^ uBs0dl, s29d

the state ofSB at an arbitrary timet is

uCSBstdl = xu↓lSuB↓stdl + gu↑lSuB↑stdl, s30d

where

uB↓stdl = uB↑s− tdl = expSigto
k=1

N

sz
bk/2DuBs0dl. s31d

The state of the system is then described by the reduced
density operator

rS = uxu2u↓lSk↓ u + xg*rstdu↓lSk↑ u

+ x*gr*stdu↑lSk↓ u + ugu2u↑lSk↑ u, s32d

where thedecoherencefactor f15g rstd=kB↑std uB↓stdl can be
easily calculated. The absolute value of this factor is
bounded by 0ø urstdu2ø1, corresponding to complete deco-
herence to a statistical mixtures0d and no loss of coherence
s1d, respectively. TheSB tangle tSuBstd can be written in
terms of this factor by

tSuBstd = 4uxu2ugu2f1 − urstdu2g. s33d

We first consider an initial bath state of the form

uBs0dl = ^
k=1

N

sau↓lBk
+ bu↑lBk

d, s34d

which is completely separable, with each individual bath
spin in an identical statespreserving the symmetryd. It is a
relatively simple exercise to calculate the decoherence factor,

urstdu2 = fuau4 + ubu4 + 2uau2ubu2coss2gtdgN. s35d

As argued in Zureket al. f15g, asN→`, the average value
kurstdu2l→0, implying complete decoherence of the initial
state. This is the average over time, since for largeN, urstdu2
is predominantly 0sover timed but will revive to 1 periodi-
cally. However, asN→`, these revival approachd functions
in time. With no intrabath entanglementstB=0d, there is no
bound ontSuB, resulting in maximal possible entanglement
between system and bath. Unentangled baths of this form
were the topic of Ref.f15g.

We now consider an initial entangled environment state.
Following from the previous construction of the
entanglement-sharing constraint, we choose an initial state of
the form

uBs0dl =
a

ÎN
su↓↓ ¯ ↓↓↑lB + u↓↓ ¯ ↓↑↓lB + ¯

+ u↑↓ ¯ ↓↓↓lBd + du↓↓ ¯ ↓↓lB, s36d

where a2+d2=1, such that the entanglement between any
two bath spins istB=4a4. Since the system-bath interaction
does not flip spins, for such initial states the intrabath en-
tanglement is invariant over the evolution. In other words,
the bath spins maintain their entanglement. From this initial
bath state, the decoherence factor is

urstdu2 = uau4 + udu4 + 2uau2udu2coss2gtd, s37d

which, first, does not average to zero in the limit of largeN
and, in fact, will not be zero at anytime for given values ofa
andd ssee Fig. 1d. This can be interpreted as a suppression of
decoherence, since at no time will the system ever be a com-
plete statistical mixture of states.

The inequality only places a nontrivial upper bound on
the system-bath entanglement whentBù1/N2. For the states
considered here, this corresponds to the parameter range
1/Î2øaø1, to which we will now restrict ourselves. The
system-bath tangle is given by

tSuE = 2uau2s1 − uau2df1 − coss2gtdg. s38d

From the intrabath tangletB=4a4, the entanglement-sharing
inequality s24d gives an upper bound on the system-bath
tangle of

tSuE
max= 4uau2s1 − uau2d s39d

and it is simple to show thattSuEøtSuE
max. In turn, this con-

strains the lower bound on the decoherence factor. This
simple example demonstrates that entanglement in the envi-
ronment can constrain entanglement between the system and
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environment, and hence limit the effect of decoherence. Of
course, in this example we have not considered any intrinsic
central spin or bath dynamics.

It is also possible to calculate the intrabath entanglement
for the Tessieri-Wilkie modelf6g, where the initial state of
the bath is a thermal state and thus the overall state at timet
is mixed. In the Tessieri-Wilkie model, the system is de-
scribed by

HS =
v0

2
sz

s0d + bsx
s0d, s40d

the bath,

HB = o
i=1

N
vi

2
sz

sid + bo
i=1

N

sx
sid + lo

i=1

N−1

o
j=1

N

sx
sidsx

s jd, s41d

and the interaction,

HSB = l0o
i=1

N

sx
sidsx

s0d. s42d

Following Ref. f6g, b=0.01, l0=1, andv0=0.8288; how-
ever, we setvi =1 such that all baths spins are identical. The
bath starts in the thermal staterBs0d=exps−HB
/kTd / hTrfexps−HB /kTdgj, such that varying the intrabath
coupling strengthl varies the initial entanglement between
the bath spins. To see the effects of decoherence, the central
spin is initialized in the stateucSs0dl=su↑ l+ u↓ ld /Î2. In the
absence of the bath, the central spin will simply precess,
exhibiting Rabi oscillations. Interactions with the bath that
decohere the spin will prevent such coherent oscillations.

Figure 2 shows how an entangled bath can suppress the
decohering effects of the bath, allowing coherent oscillations
of the central spin. Since the bath begins in thermal equilib-
rium, its state does not vary significantly over its evolution
sespecially if N is larged. Hence, if the initial state is en-

FIG. 1. sColor onlined Plot of the temporal
evolution of the decoherence factorurstdu2 with an
initial entangled environmental state of the form
of Eq. s36d for different values of intrabath
tangle. We see that the entanglement in the bath
acts to suppress the oscillation ofurstdu2, meaning
the state of the system remains coherent.

FIG. 2. sColor onlined Rabi os-
cillations and the intrabath en-
tanglement, quantified by the
tangle between any two bath
spins, for three different intrabath
coupling strengths for the
Tesseiri-Wilkie model, with N
=10 bath spins. The dotted line in
the kŝxl plot is the case of no
system-bath interaction. As the in-
trabath coupling increases, so
does the intrabath entanglement,
and the Rabi oscillations approach
the limit of no system-bath
interaction.
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tangled, this degree of entanglement is maintained through-
out the evolution.

Since the initial state is mixed, classical correlations be-
tween system and bath will be a cause of decoherence. How-
ever, it is likely that the result of Koashi and Winterf10g may
be extended to the central-spin model, thus showing that sup-
pression of decoherence is a generic feature when spin-bath
environments maintain a high degree of internal entangle-
ment.

In order to gain insight into how intrabath entanglement
can reduce decoherence we have considered two simple
models in which all bath spins interact equally with one an-
other. This represents a model for which the mean-field ap-
proximation for the interaction between spins is exact. More
physical models will involve short-range interactions, yet we
conjecture that they will exhibit essentially the same phe-
nomena.

Recent studies of a central spin or qubit interacting with a
reservoir ofsidenticald qubits has considered the process of
homogenizationf16g, of which thermalization is a special
casef17g. The system qubit is initially in some stater, with
each bath spin in the identical statej. The aim of the process
is to output all qubits in some arbitrarily small neighborhood
of j. Thermalization is the case wherej corresponds to the
thermal state. This thermalization process is equivalent to the
decoherence of the system qubit to a thermal state.

In this discrete time process, the system qubit interacts
with a only single bath qubit at each time step and never the
same qubit twice. It is shown that the partial swap operation
uniquely determines a universal quantum homogenizerf16g.
While there is no explicit interaction between bath qubits,
their mutual interaction with the system qubit generates en-
tanglement not only between the system and reservoir, but
also intrabath entanglement. This entanglement is studied in
f16g and the results agree with the entanglement-sharing ar-
guments we have made here. Specifically, in the example
considered, the entanglement between system and bath de-

creases in the long term, as more bath qubits become en-
tangled with each other. Interestingly, it is shown that all
entanglements are pairwise, with no multiparty entanglement
presentf18g. It would be interesting to extend the work in
these articles by considering thermalization in the presence
of a self-interacting bath. Of course, different methods would
have to be employed, since the state of the bath qubits would
change after each interaction.

Decoherence is the major stumbling block on the road to
quantum computing. Here we have introduced a novel way
of constraining the decoherence effects from a spin-bath en-
vironment. Such environmental models are of particular im-
portance for predicting decoherence effects in solid-state qu-
bits in the low-temperature regimef19,20g.

We have used two simplified models as examples of how
entanglement in the environmental bath may suppress deco-
herence. While we have only discussed spin baths, one could
also envision similar effects for oscillator baths, where en-
tangled spins may be replaced by multimode squeezed states.
As well, we have focused upon two-party entanglement in
the bath. The effects ofm-party entangled states may be
quite different.

The types of entangled states of the bath that may be
created and maintained will depend explicitly upon the
physical system in question. To discover if entanglement
sharing can suppress decoherence in realistic situations re-
quires calculations for specific quantum computer architec-
tures. Only then will it be apparent if this unique property of
entanglement can be used to our advantage in overcoming
decoherence.

We thank Michael Nielsen for helpful discussions on
entanglement-sharing inequalities. A.P.H. thanks Philip
Stamp for enjoyable and enlightening discussions about the
“real world” of spin baths. This work was supported by the
Australian Research Council as part of the Centre of Excel-
lence for Quantum Computer Technology.
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