3,627 research outputs found
Interprofessional Simulation in Accredited Paramedic Programs
Introduction: Healthcare leaders advocate for interprofessional education as a means to promote collaborative practice, enhance interdisciplinary communication, and improve patient safety in the health professions. There is little evidence specific to interprofessional simulation in paramedic education. Methods: The National Association of EMS Educators (NAEMSE) surveyed paramedic programs that were accredited or in the process of becoming accredited. Program respondents were asked to characterize their resources and their use of those resources, and then were asked about their perceptions pertaining to simulation in their program. Chi-square analysis was used to compare characteristics of programs that participated in interdisciplinary simulation with those that did not. Results: Of the 389 of 638 (61%) paramedic program survey respondents, 44% (159 of 362) report interprofessional simulation. They perceived they used the right amount of simulation more frequently than other paramedic programs X2 (1, N=362) = 8.425, p X2 (1, N=362) = 11.751, pX2 (1, N=356) = 8.838, pX2 (1, N=362) = 4.704, pX2 (1, N=362) = 11.508 pX2 (1, N=362) = 5.495, pX2 (1, N=359) = 12.595, p\u3c0.01.Conclusion: This research suggests that paramedic programs conducting interdisciplinary simulation indicated they have greater access to resources and faculty training to support simulation
A multi-objective evolutionary algorithm fitness function for case-base maintenance.
Case-Base Maintenance (CBM) has two important goals. On the one hand, it aims to reduce the size of the case-base. On the other hand, it has to improve the accuracy of the CBR system. CBM can be represented as a multi-objective optimization problem to achieve both goals. Multi-Objective Evolutionary Algorithms (MOEAs) have been recognised as appropriate techniques for multi-objective optimisation because they perform a search for multiple solutions in parallel. In the present paper we introduce a fitness function based on the Complexity Profiling model to perform CBM with MOEA, and we compare its results against other known CBM approaches. From the experimental results, CBM with MOEA shows regularly good results in many case-bases, despite the amount of redundant and noisy cases, and with a significant potential for improvement
Critical Behaviour of Superfluid He in Aerogel
We report on Monte Carlo studies of the critical behaviour of superfluid
He in the presence of quenched disorder with long-range fractal
correlations. According to the heuristic argument by Harris, uncorrelated
disorder is irrelevant when the specific heat critical exponent is
negative, which is the case for the pure He. However, experiments on helium
in aerogel
have shown that the superfluid density critical exponent changes. We
hypothesize that this is a cross-over effect due to the fractal nature of
aerogel. Modelling the aerogel as an incipient percolating cluster in 3D and
weakening the bonds at the fractal sites, we perform XY-model simulations,
which demonstrate an increase in from
for the pure case to an apparent value of in the presence of
the fractal disorder, provided that the helium correlation length does not
exceed the fractal correlation length.Comment: 4 pages, RevTex, 3 postscript figures, LaTeX file and figures have
been uuencoded
Atomic and electronic structure of twin growth defects in magnetite
We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains
Atomic and electronic structure of twin growth defects in magnetite
We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains
The Paradox of Power in CSR: A Case Study on Implementation
Purpose Although current literature assumes positive outcomes for stakeholders resulting from an increase in power associated with CSR, this research suggests that this increase can lead to conflict within organizations, resulting in almost complete inactivity on CSR.
Methods A single in-depth case study, focusing on power as an embedded concept.
Results Empirical evidence is used to demonstrate how some actors use CSR to improve their own positions within an organization. Resource dependence theory is used to highlight why this may be a more significant concern for CSR.
Conclusions Increasing power for CSR has the potential to offer actors associated with it increased personal power, and thus can attract opportunistic actors with little interest in realizing the benefits of CSR for the company and its stakeholders. Thus power can be an impediment to furthering CSR strategy and activities at the individual and organizational level
RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord
ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEGâs). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network âhubâ gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TFâs involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients
Percutaneous transmyocardial revascularization induces angiogenesis: a histologic and 3-dimensional micro computed tomography study.
The purpose of this study was to visualize the spatial patterns and connection of channels created after percutaneous transmyocardial revascularization (PTMR) in normal porcine hearts, and to estimate the relative contributions of transmyocardial and coronary perfusion. Six pigs underwent PTMR creating channels using radiofrequency ablative energy. Three-dimensional computed tomography imaging of channels 1 hr after PTMR showed the direct connection of PTMR channels to the myocardial capillary network and to epicardial coronary vessels. In the heart, examined 28 day after PTMR, there was a fine, extensive, network of microvessels originating from the site of the original PTMR channel, also connecting the left ventricular cavity to myocardial capillaries. Histopathologic examination of the 1-hr specimens showed numerous regions of myocardial hemorrhage and associated inflammatory cell infiltration. In the 28-day specimens, newly developed new vascular network suggested neovascularization within the core of these channel remnants. The immunoreactivity for basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were intense within myocardium and neovascular structure surrounding PTMR channel remnants. The vascular connections occur by direct communication with existing myocardial vasculature acutely, and angiogenesis in these channel remnant chronically
Gene content evolution in the arthropods
Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity
Cell Dispersal Influences Tumor Heterogeneity and Introduces a Bias in NGS Data Interpretation
Short and long distance cell dispersal can have a marked effect on tumor structure, high cellular motility could lead to faster cell mixing and lower observable intratumor heterogeneity. Here we evaluated a model for cell mixing that investigates how short-range dispersal and cell turnover will account for mutational proportions. We show that cancer cells can penetrate neighboring and distinct areas in a matter of days. In next generation sequencing runs, higher proportions of a given cell line generated frequencies with higher precision, while mixtures with lower amounts of each cell line had lower precision manifesting in higher standard deviations. When multiple cell lines were co-cultured, cellular movement altered observed mutation frequency by up to 18.5%. We propose that some of the shared mutations detected at low allele frequencies represent highly motile clones that appear in multiple regions of a tumor owing to dispersion throughout the tumor. In brief, cell movement will lead to a significant technical (sampling) bias when using next generation sequencing to determine clonal composition. A possible solution to this drawback would be to radically decrease detection thresholds and increase coverage in NGS analyses. © 2017 The Author(s)
- âŠ