111 research outputs found

    Autocrine regulation of asthmatic airway inflammation: role of airway smooth muscle

    Get PDF
    Chronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth muscle, which has been regarded as a contractile component of the airways responding to various mediators and neurotransmitters, has recently been recognised as a rich source of pro-inflammatory cytokines, chemokines and growth factors. In this review, we discuss the role of airway smooth muscle cells in the regulation and perpetuation of airway inflammation that contribute to the pathogenesis of asthma

    Grain surface features of Apollo 17 orange and black glass

    Get PDF
    Lunar soil sample 74220 and core samples 74001/2 consist mainly of orange glass droplets, droplet fragments, and their crystallized equivalents. These samples are now generally accepted to be pyroclastic ejecta from early lunar volcanic eruptions. It has been known that they contain surface coatings and material rich in volatile condensable phases including S, Zn, F, Cl, and many volatile metals. Meyer summarizes the voluminous published chemical data and calculates the volatile enrichment ratios for most of the surface condensates. In an attempt to more completely understand this enrichment of surface volatiles, we have searched for carbon and carbon-bearing phases on droplet surfaces. We have reviewed many of our existing photomicrographs and energy dispersive analysis (EDX) of grain surfaces and have reexamined some of our older SEM mounts using an improved EDXA system capable of light element detection and analysis (oxygen, nitrogen, and carbon). In addition, we have made fresh mounts using procedures which should minimize carbon contamination or extraneous carbon x-rays and have analyzed for carbon

    Angiotensin II induces hypertrophy of human airway smooth muscle cells: expression of transcription factors and transforming growth factor-beta1

    Get PDF
    Increased smooth muscle mass due to hyperplasia and hypertrophy of airway smooth muscle (ASM) cells is a common feature in asthma. Angiotensin II (Ang II), a potent vasoconstrictor and mitogen for a wide variety of cells, has recently been implicated in bronchoconstriction in asthmatics. However, a possible mitogenic role as well as underlying molecular mechanisms of this octapeptide in human ASM cells are not yet known. We studied the effects of Ang II on ASM cell proliferation and growth and on the expression of three transcription factors, egr-1, c-fos, and c-jun, as well as a cytokine, transforming growth factor-beta1 (TGF-beta1). Human ASM cells were isolated by enzymatic digestion of bronchial smooth muscle obtained from lung resection tissue. Confluent cells were growth-arrested and subsequently incubated with Ang II (100 nM) for different time periods and processed for the measurement of cell growth and gene expression. Ang II significantly induced DNA and protein synthesis in human ASM cells at 8 h, resulting in a net increase in the accumulation of protein over DNA (i.e., cellular hypertrophy) at 16 h of incubation. Cell counts and MTT-reduction assay, however, showed no increase in cell number as a result of Ang II stimulation. Ang II stimulated the expression of egr-1 and c-fos as early as 15 min, reaching maximum levels at 45 min, whereas the expression of c-jun peaked at 2 h of Ang II exposure. Furthermore, steady-state mRNA levels of TGF-beta1 were upregulated by Ang II after 4 h and reached peak levels at 16 h of incubation. Secretion of biologically active TGF-beta1 from human ASM cells was significantly (P <= 0.02) enhanced by Ang II incubation after 8 h, which remained elevated until 24 h. Our results suggest that the Ang II-induced transient early expression of transcription factors may regulate autocrine genes like TGF-beta1, of which the subsequent late upregulation could contribute to cellular hypertrophy during, for example, airway remodeling in asthma

    Tumor necrosis factor-alpha enhances mRNA expression and secretion of interleukin-6 in cultured human airway smooth muscle cells

    Get PDF
    Airway smooth muscle (ASM) is considered to be an end-target cell for the effects of mediators released during airway wall inflammation. Several reports suggest that activated ASM may be capable of generating various proinflammatory cytokines. We investigated the effects of tumor necrosis factor (TNF)-alpha, a potent proinflammatory cytokine, on cultured human ASM cells by examining the expression and release of the cytokine interleukin (IL)-6, cell proliferation, and the expression pattern of c-fos and c-jun, two nuclear proto-oncogenes constituting the activator protein-1 transcription factor. Growth-arrested cell monolayers were stimulated with human recombinant TNF-alpha in a concentration- and time-dependent manner. TNF-alpha stimulated the expression of IL-6 messenger RNA (mRNA), which was detected after 15 min, reaching a maximum at 1 h. IL-6 protein was readily detected in ASM cell-conditioned medium after 2 h of TNF-alpha stimulation. Protein levels increased in a time- and concentration-dependent manner. Release of IL-6 elicited by TNF-alpha was significantly inhibited by dexamethasone, cycloheximide, and nordihydroguaiaretic acid (NDGA). TNF-alpha did not alter DNA biosynthesis up to 48 h or cell numbers up to 120 h. Northern blot analysis of proto-oncogene expression revealed that c-fos and c-jun mRNA levels were elevated after 30 min of TNF-alpha incubation with maximum levels at 1 h and 45 min, respectively. Expression of c-fos mRNA was downregulated by NDGA. Four hours of TNF-alpha treatment resulted in translocation of c-jun immunofluorescence from the cytoplasm to the nucleus in human ASM cells. Our results suggest that despite the lack of a mitogenic response to TNF-alpha, upregulation of primary response genes in human ASM cells may account for the induction of proinflammatory cytokines, such as IL-6, in human airways

    GalNAc/Gal-Binding Rhizoctonia solani Agglutinin Has Antiproliferative Activity in Drosophila melanogaster S2 Cells via MAPK and JAK/STAT Signaling

    Get PDF
    Rhizoctonia solani agglutinin, further referred to as RSA, is a lectin isolated from the plant pathogenic fungus Rhizoctonia solani. Previously, we reported a high entomotoxic activity of RSA towards the cotton leafworm Spodoptera littoralis. To better understand the mechanism of action of RSA, Drosophila melanogaster Schneider S2 cells were treated with different concentrations of the lectin and FITC-labeled RSA binding was examined using confocal fluorescence microscopy. RSA has antiproliferative activity with a median effect concentration (EC50) of 0.35 µM. In addition, the lectin was typically bound to the cell surface but not internalized. In contrast, the N-acetylglucosamine-binding lectin WGA and the galactose-binding lectin PNA, which were both also inhibitory for S2 cell proliferation, were internalized whereas the mannose-binding lectin GNA did not show any activity on these cells, although it was internalized. Extracted DNA and nuclei from S2 cells treated with RSA were not different from untreated cells, confirming inhibition of proliferation without apoptosis. Pre-incubation of RSA with N-acetylgalactosamine clearly inhibited the antiproliferative activity by RSA in S2 cells, demonstrating the importance of carbohydrate binding. Similarly, the use of MEK and JAK inhibitors reduced the activity of RSA. Finally, RSA affinity chromatography of membrane proteins from S2 cells allowed the identification of several cell surface receptors involved in both signaling transduction pathways

    Anatomy of STEM Teaching in American Universities: A Snapshot from a Large-Scale Observation Study

    Get PDF
    National and local initiatives focused on the transformation of STEM teaching in higher education have multiplied over the last decade. These initiatives often focus on measuring change in instructional practices, but it is difficult to monitor such change without a national picture of STEM educational practices, especially as characterized by common observational instruments. We characterized a snapshot of this landscape by conducting the first large scale observation-based study. We found that lecturing was prominent throughout the undergraduate STEM curriculum, even in classrooms with infrastructure designed to support active learning, indicating that further work is required to reform STEM education. Additionally, we established that STEM faculty’s instructional practices can vary substantially within a course, invalidating the commonly-used teaching evaluations based on a one-time observation

    Partner in fat metabolism: role of KLFs in fat burning and reproductive behavior

    Get PDF
    The abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular disease and obesity. This set of conditions, known as metabolic syndrome, is a global pandemic of enormous medical, economic, and social concern affecting a significant portion of the world’s population. Although genetics, physiology and environmental components play a major role in the onset of disease caused by excessive fat accumulation, little is known about how or to what extent each of these factors contributes to it. The worm, Caenorhabditis elegans offers an opportunity to study disease related to metabolic disorder in a developmental system that provides anatomical and genomic simplicity relative to the vertebrate animals and is an excellent eukaryotic genetic model which enable us to answer the questions concerning fat accumulation which remain unresolved. The stored triglycerides (TG) provide the primary source of energy during periods of food deficiency. In nature, lipid stored as TGs are hydrolyzed into fatty acids which are broken down through β-oxidation to yield acetyl-CoA. Our recent study suggests that a member of C. elegans Krüppel-like factor, klf-3 regulates lipid metabolism by promoting FA β-oxidation and in parallel may contribute in normal reproduction and fecundity. Genetic and epigenetic factors that influence this pathway may have considerable impact on fat related diseases in human. Increasing number of studies suggest the role of mammalian KLFs in adipogenesis. This functional conservation should guide our further effort to explore C. elegans as a legitimate model system for studying the role of KLFs in many pathway components of lipid metabolism
    corecore