103 research outputs found

    The T2K ND280 Off-Axis Pi-Zero Detector

    Full text link
    The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the P{\O}D is to measure the relevant cross sections for neutrino interactions that generate pi-zero's, especially the cross section for neutral current pi-zero interactions, which are one of the dominant sources of background to the electron neutrino appearance signal in T2K. The P{\O}D is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM

    Measurement of a small atmospheric νμ/νe\nu_\mu/\nu_e ratio

    Full text link
    From an exposure of 25.5~kiloton-years of the Super-Kamiokande detector, 900 muon-like and 983 electron-like single-ring atmospheric neutrino interactions were detected with momentum pe>100p_e > 100 MeV/cc, pμ>200p_\mu > 200 MeV/cc, and with visible energy less than 1.33 GeV. Using a detailed Monte Carlo simulation, the ratio (μ/e)DATA/(μ/e)MC(\mu/e)_{DATA}/(\mu/e)_{MC} was measured to be 0.61±0.03(stat.)±0.05(sys.)0.61 \pm 0.03(stat.) \pm 0.05(sys.), consistent with previous results from the Kamiokande, IMB and Soudan-2 experiments, and smaller than expected from theoretical models of atmospheric neutrino production.Comment: 14 pages with 5 figure

    Calibration of Super-Kamiokande Using an Electron Linac

    Get PDF
    In order to calibrate the Super-Kamiokande experiment for solar neutrino measurements, a linear accelerator (LINAC) for electrons was installed at the detector. LINAC data were taken at various positions in the detector volume, tracking the detector response in the variables relevant to solar neutrino analysis. In particular, the absolute energy scale is now known with less than 1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM

    Measurement of radon concentrations at Super-Kamiokande

    Full text link
    Radioactivity from radon is a major background for observing solar neutrinos at Super-Kamiokande. In this paper, we describe the measurement of radon concentrations at Super-Kamiokande, the method of radon reduction, and the radon monitoring system. The measurement shows that the current low-energy event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the Super-Kamiokande water of less than 1.4 mBq/m3^3.Comment: 11 pages, 4 figure

    Search for Neutral Q-balls in Super-Kamiokande II

    Full text link
    A search for Q-balls induced groups of successive contained events has been carried out in Super-Kamiokande II with 541.7 days of live time. Neutral Q-balls would emit pions when colliding with nuclei, generating a signal of successive contained pion events along a track. No candidate for successive contained event groups has been found in Super-Kamiokande II, so upper limits on the possible flux of such Q-balls have been obtained.Comment: 5 pages, 5 figures, Submitted to Phys. Lett.

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline

    Get PDF
    A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 10 20 at the GeV scale

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Measurement of coherent π+π^{+} production in low energy neutrino-Carbon scattering

    Get PDF
    We report the first measurement of the flux-averaged cross section for charged current coherent π+\pi^{+} production on carbon for neutrino energies less than 1.5 GeV to a restricted final state phase space region in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso {\it et al.}, the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. This results contradicts the null results reported by K2K and SciBooNE in a similar neutrino energy region
    corecore