11 research outputs found
Integrating Naturalized Areas onto the University at Albany Campus
The purpose of this management plan is to provide recommendations to create naturalized areas and increase biodiversity on the University at Albany campus. The University currently follows a number of environmental policies in an effort to promote uniformity. There are many benefits to increasing biodiversity on campus such as providing ecosystem services, increasing education and awareness, aiding in stormwater management, and support institutional advancement. There are already several areas on the campus that would serve as prime locations for projects of this nature including the front lawn and the Dutch and State parking lots. Future directions that the campus can take includes a biodiversity sanctuary and a habitat corridor along a proposed rapid transit bus route. If we implement these policies, the University at Albany can become more appealing and a model for enhancing biodiversity on other urban campuse
Recommended from our members
Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data
Abstract: Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers