999 research outputs found

    Random, blocky and alternating ordering in supramolecular polymers of chemically bidisperse monomers

    Get PDF
    As a first step to understanding the role of molecular or chemical polydispersity in self-assembly, we put forward a coarse-grained model that describes the spontaneous formation of quasi-linear polymers in solutions containing two self-assembling species. Our theoretical framework is based on a two-component self-assembled Ising model in which the bidispersity is parameterized in terms of the strengths of the binding free energies that depend on the monomer species involved in the pairing interaction. Depending upon the relative values of the binding free energies involved, different morphologies of assemblies that include both components are formed, exhibiting paramagnetic-, ferromagnetic- or anti ferromagnetic-like order,i.e., random, blocky or alternating ordering of the two components in the assemblies. Analyzing the model for the case of ferromagnetic ordering, which is of most practical interest, we find that the transition from conditions of minimal assembly to those characterized by strong polymerization can be described by a critical concentration that depends on the concentration ratio of the two species. Interestingly, the distribution of monomers in the assemblies is different from that in the original distribution, i.e., the ratio of the concentrations of the two components put into the system. The monomers with a smaller binding free energy are more abundant in short assemblies and monomers with a larger binding affinity are more abundant in longer assemblies. Under certain conditions the two components congregate into separate supramolecular polymeric species and in that sense phase separate. We find strong deviations from the expected growth law for supramolecular polymers even for modest amounts of a second component, provided it is chemically sufficiently distinct from the main one.Comment: Submitted to Macromolecules, 6 figures. arXiv admin note: substantial text overlap with arXiv:1111.176

    Stable Distributions in Stochastic Fragmentation

    Full text link
    We investigate a class of stochastic fragmentation processes involving stable and unstable fragments. We solve analytically for the fragment length density and find that a generic algebraic divergence characterizes its small-size tail. Furthermore, the entire range of acceptable values of decay exponent consistent with the length conservation can be realized. We show that the stochastic fragmentation process is non-self-averaging as moments exhibit significant sample-to-sample fluctuations. Additionally, we find that the distributions of the moments and of extremal characteristics possess an infinite set of progressively weaker singularities.Comment: 11 pages, 5 figure

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    Variability in gene expression underlies incomplete penetrance

    Get PDF
    The phenotypic differences between individual organisms can often be ascribed to underlying genetic and environmental variation. However, even genetically identical organisms in homogeneous environments vary, indicating that randomness in developmental processes such as gene expression may also generate diversity. To examine the consequences of gene expression variability in multicellular organisms, we studied intestinal specification in the nematode Caenorhabditis elegans in which wild-type cell fate is invariant and controlled by a small transcriptional network. Mutations in elements of this network can have indeterminate effects: some mutant embryos fail to develop intestinal cells, whereas others produce intestinal precursors. By counting transcripts of the genes in this network in individual embryos, we show that the expression of an otherwise redundant gene becomes highly variable in the mutants and that this variation is subjected to a threshold, producing an ON/OFF expression pattern of the master regulatory gene of intestinal differentiation. Our results demonstrate that mutations in developmental networks can expose otherwise buffered stochastic variability in gene expression, leading to pronounced phenotypic variation.National Institutes of Health (U.S.). Pioneer AwardMathematical Sciences Postdoctoral Research Fellowships (DMS-0603392)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (5F32GM080966

    Aristotelian Essentialism: Essence in the Age of Evolution

    Get PDF
    The advent of contemporary evolutionary theory ushered in the eventual decline of Aristotelian Essentialism (Æ) – for it is widely assumed that essence does not, and cannot have any proper place in the age of evolution. This paper argues that this assumption is a mistake: if Æ can be suitably evolved, it need not face extinction. In it, I claim that if that theory’s fundamental ontology consists of dispositional properties, and if its characteristic metaphysical machinery is interpreted within the framework of contemporary evolutionary developmental biology, an evolved essentialism is available. The reformulated theory of Æ offered in this paper not only fails to fall prey to the typical collection of criticisms, but is also independently both theoretically and empirically plausible. The paper contends that, properly understood, essence belongs in the age of evolution

    C. elegans ATAD-3 Is Essential for Mitochondrial Activity and Development

    Get PDF
    Contains fulltext : 80701.pdf (publisher's version ) (Open Access)BACKGROUND: Mammalian ATAD3 is a mitochondrial protein, which is thought to play an important role in nucleoid organization. However, its exact function is still unresolved. RESULTS: Here, we characterize the Caenorhabditis elegans (C. elegans) ATAD3 homologue (ATAD-3) and investigate its importance for mitochondrial function and development. We show that ATAD-3 is highly conserved among different species and RNA mediated interference against atad-3 causes severe defects, characterized by early larval arrest, gonadal dysfunction and embryonic lethality. Investigation of mitochondrial physiology revealed a disturbance in organellar structure while biogenesis and function, as indicated by complex I and citrate synthase activities, appeared to be unaltered according to the developmental stage. Nevertheless, we observed very low complex I and citrate synthase activities in L1 larvae populations in comparison to higher larval and adult stages. Our findings indicate that atad-3(RNAi) animals arrest at developmental stages with low mitochondrial activity. In addition, a reduced intestinal fat storage and low lysosomal content after depletion of ATAD-3 suggests a central role of this protein for metabolic activity. CONCLUSIONS: In summary, our data clearly indicate that ATAD-3 is essential for C. elegans development in vivo. Moreover, our results suggest that the protein is important for the upregulation of mitochondrial activity during the transition to higher larval stages

    Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial

    Get PDF
    Background. Continuous electronic fetal heart-rate monitoring is widely used during labour, and computerised interpretation could increase its usefulness. We aimed to establish whether the addition of decision-support software to assist in the interpretation of cardiotocographs affected the number of poor neonatal outcomes. Methods. In this unmasked randomised controlled trial, we recruited women in labour aged 16 years or older having continuous electronic fetal monitoring, with a singleton or twin pregnancy, and at 35 weeks’ gestation or more at 24 maternity units in the UK and Ireland. They were randomly assigned (1:1) to decision support with the INFANT system or no decision support via a computer-generated stratified block randomisation schedule. The primary outcomes were poor neonatal outcome (intrapartum stillbirth or early neonatal death excluding lethal congenital anomalies, or neonatal encephalopathy, admission to the neonatal unit within 24 h for ≥48 h with evidence of feeding difficulties, respiratory illness, or encephalopathy with evidence of compromise at birth), and developmental assessment at age 2 years in a subset of surviving children. Analyses were done by intention to treat. This trial is completed and is registered with the ISRCTN Registry, number 98680152. Findings. Between Jan 6, 2010, and Aug 31, 2013, 47062 women were randomly assigned (23515 in the decision-support group and 23547 in the no-decision-support group) and 46042 were analysed (22987 in the decision-support group and 23055 in the no-decision-support group). We noted no difference in the incidence of poor neonatal outcome between the groups—172 (0·7%) babies in the decision-support group compared with 171 (0·7%) babies in the no-decision-support group (adjusted risk ratio 1·01, 95% CI 0·82–1·25). At 2 years, no significant differences were noted in terms of developmental assessment. Interpretation. Use of computerised interpretation of cardiotocographs in women who have continuous electronic fetal monitoring in labour does not improve clinical outcomes for mothers or babies

    An Integrated Strategy to Study Muscle Development and Myofilament Structure in Caenorhabditis elegans

    Get PDF
    A crucial step in the development of muscle cells in all metazoan animals is the assembly and anchorage of the sarcomere, the essential repeat unit responsible for muscle contraction. In Caenorhabditis elegans, many of the critical proteins involved in this process have been uncovered through mutational screens focusing on uncoordinated movement and embryonic arrest phenotypes. We propose that additional sarcomeric proteins exist for which there is a less severe, or entirely different, mutant phenotype produced in their absence. We have used Serial Analysis of Gene Expression (SAGE) to generate a comprehensive profile of late embryonic muscle gene expression. We generated two replicate long SAGE libraries for sorted embryonic muscle cells, identifying 7,974 protein-coding genes. A refined list of 3,577 genes expressed in muscle cells was compiled from the overlap between our SAGE data and available microarray data. Using the genes in our refined list, we have performed two separate RNA interference (RNAi) screens to identify novel genes that play a role in sarcomere assembly and/or maintenance in either embryonic or adult muscle. To identify muscle defects in embryos, we screened specifically for the Pat embryonic arrest phenotype. To visualize muscle defects in adult animals, we fed dsRNA to worms producing a GFP-tagged myosin protein, thus allowing us to analyze their myofilament organization under gene knockdown conditions using fluorescence microscopy. By eliminating or severely reducing the expression of 3,300 genes using RNAi, we identified 122 genes necessary for proper myofilament organization, 108 of which are genes without a previously characterized role in muscle. Many of the genes affecting sarcomere integrity have human homologs for which little or nothing is known

    Genome of <i>Leptomonas pyrrhocoris</i>:a high-quality reference for monoxenous trypanosomatids and new insights into evolution of <i>Leishmania</i>

    Get PDF
    Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum
    • …
    corecore