4,938 research outputs found

    Neutrino Scattering in a Magnetic Field

    Get PDF
    Motivated by the evidence for a finite neutrino mass we examine anew the interaction of neutrinos in a magnetic field. We present the rate for radiative scattering for both massless and massive neutrinos in the standard model and give the corresponding numerical estimates. We also consider the effects arising from a possible neutrino magnetic moment.Comment: 10 pages, 3 figures; Acknowledgements added 05.07.200

    Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra

    Get PDF
    We study the influence of phase matching on interference minima in high harmonic spectra. We concentrate on structures in atoms due to interference of different angular momentum channels during recombination. We use the Cooper minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure 2d harmonic spectra in argon as a function of wavelength and angular divergence. While we identify a clear CM in the spectrum when the target gas jet is placed after the laser focus, we find that the appearance of the CM varies with angular divergence and can even be completely washed out when the gas jet is placed closer to the focus. We also show that the argon CM appears at different wavelengths in harmonic and photo-absorption spectra measured under conditions independent of any wavelength calibration. We model the experiment with a simulation based on coupled solutions of the time-dependent Schr\"odinger equation and the Maxwell wave equation, including both the single atom response and macroscopic effects of propagation. The single atom calculations confirm that the ground state of argon can be represented by its field free pp symmetry, despite the strong laser field used in high harmonic generation. Because of this, the CM structure in the harmonic spectrum can be described as the interference of continuum ss and dd channels, whose relative phase jumps by π\pi at the CM energy, resulting in a minimum shifted from the photoionization result. We also show that the full calculations reproduce the dependence of the CM on the macroscopic conditions. We calculate simple phase matching factors as a function of harmonic order and explain our experimental and theoretical observation in terms of the effect of phase matching on the shape of the harmonic spectrum. Phase matching must be taken into account to fully understand spectral features related to HHG spectroscopy

    Strong field ionization to multiple electronic states in water

    Full text link
    High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H2O and D2O high harmonic yields to isolate the characteristic nuclear motion of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by simulating strong field ionization and high harmonic generation from the water isotopes using the time-dependent Schr\"odinger equation. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules

    Proteins to Order Use of Synthetic DNA to Generate Site-Specific Mutations

    Get PDF
    The ability to cause specific changes in the amino acid sequences of proteins would greatly advance studies on the influence of protein structure on biochemical function. If the desired changes can once be made in the nucleic acid which encodes the protein, one can use cloning in an appropriate microorganism to produce essentially limitless quantities of the mutant protein. We describe here the application of oligonucleotide-directed site-specific mutagenesis to accomplish this objective for the enzyme B-lactamase, the gene for which is contained in the plasmid pBR322. The method uses a procedure to screen for mutant clones which depends on the DNA in the various colonies and not on the properties of the mutant protein; the method can, therefore, be widely applied and does not require, in each separate case, the development of a screening procedure which depends on some phenotypic difference between mutant and wild-type protein

    Social interactions through the eyes of macaques and humans

    Get PDF
    Group-living primates frequently interact with each other to maintain social bonds as well as to compete for valuable resources. Observing such social interactions between group members provides individuals with essential information (e.g. on the fighting ability or altruistic attitude of group companions) to guide their social tactics and choice of social partners. This process requires individuals to selectively attend to the most informative content within a social scene. It is unclear how non-human primates allocate attention to social interactions in different contexts, and whether they share similar patterns of social attention to humans. Here we compared the gaze behaviour of rhesus macaques and humans when free-viewing the same set of naturalistic images. The images contained positive or negative social interactions between two conspecifics of different phylogenetic distance from the observer; i.e. affiliation or aggression exchanged by two humans, rhesus macaques, Barbary macaques, baboons or lions. Monkeys directed a variable amount of gaze at the two conspecific individuals in the images according to their roles in the interaction (i.e. giver or receiver of affiliation/aggression). Their gaze distribution to non-conspecific individuals was systematically varied according to the viewed species and the nature of interactions, suggesting a contribution of both prior experience and innate bias in guiding social attention. Furthermore, the monkeys’ gaze behavior was qualitatively similar to that of humans, especially when viewing negative interactions. Detailed analysis revealed that both species directed more gaze at the face than the body region when inspecting individuals, and attended more to the body region in negative than in positive social interactions. Our study suggests that monkeys and humans share a similar pattern of role-sensitive, species- and context-dependent social attention, implying a homologous cognitive mechanism of social attention between rhesus macaques and humans

    Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    Get PDF
    AbstractMexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along with changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country

    Electron-nucleus scattering in the NEUT event generator

    Get PDF
    The NEUT event generator is a widely-used tool to simulate neutrino interactions for energies between 10s of MeV and a few TeV. NEUT plays a crucial role in neutrino oscillation analyses for the T2K and Hyper-K experiments, providing the primary simulation of the neutrino interactions whose final-state products are measured to infer the oscillation parameters. NEUT is also capable of simulating nucleon decay and hadron scattering. These proceedings present an expansion of NEUT to simulate electron scattering before showing comparisons to experimental measurements and using discrepancies to derive an empirical correction to NEUT's treatment of nuclear removal energy.Comment: 5 pages, 3 figures. NuFact2022 proceedings submissio

    Incidence of Primary Mitochondrial Disease in Children Younger Than 2 Years Presenting With Acute Liver Failure

    Get PDF
    Background: Mitochondrial liver disease (MLD), and in particular mitochondrial DNA (mtDNA) depletion syndrome (MDS) is an important cause of acute liver failure (ALF) in infancy. Early and accurate diagnosis is important because liver transplantation (LT) is often contraindicated. It is unclear which methods are the best to diagnose MLD in the setting of ALF. Objective: The aim of the study was to determine the incidence of MLD in children younger than 2 years with ALF and the utility of routine investigations to detect MLD. Methods: Thirty-nine consecutive infants with ALF were admitted to a single unit from 2009 to 2011. All were extensively investigated using an established protocol. Genes implicated in mitochondrial DNA depletion syndrome were sequenced in all cases and tissue mtDNA copy number measured where available. Results: Five infants (17%) had genetically proven MLD: DGUOK (n ÂĽ 2), POLG (n ÂĽ 2), and MPV17 (1). Four of these died, whereas 1 recovered. Two had normal muscle mtDNA copy number and 3 had normal muscle respiratory chain enzymes. An additional 8 children had low hepatic mtDNA copy number but pathogenic mutations were not detected. One of these developed fatal multisystemic disease after LT, whereas 5 who survived remain well without evidence of multisystemic disease up to 6 years later. Magnetic resonance spectroscopy did not distinguish between those with and without MLD. Conclusions: Low liver mtDNA copy number may be a secondary phenomenon in ALF. Screening for mtDNA maintenance gene mutations may be the most efficient way to confirm MLD in ALF in the first 2 years of life

    Development and Evaluation of a Trapping System for Anoplophora glabripennis (Coleoptera: Cerambycidae) in the United States

    Get PDF
    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), commonly known as the Asian longhorned beetle, is an invasive wood-boring pest that infests a number of hardwood species and causes considerable economic losses in North America, several countries in Europe, and in its native range in Asia. The success of eradication efforts may depend on early detection of introduced populations; however, detection has been limited to identification of tree damage (oviposition pits and exit holes), and the serendipitous collection of adults, often by members of the public. Here we describe the development, deployment, and evaluation of semiochemical-baited traps in the greater Worcester area in Massachusetts. Over 4 yr of trap evaluation (2009-2012), 1013 intercept panel traps were deployed, 876 of which were baited with three different families of lures. The families included lures exhibiting different rates of release of the male-produced A. glabripennis pheromone, lures with various combinations of plant volatiles, and lures with both the pheromone and plant volatiles combined. Overall, 45 individual beetles were captured in 40 different traps. Beetles were found only in traps with lures. In several cases, trap catches led to the more rapid discovery and management of previously unknown areas of infestation in the Worcester county regulated area. Analysis of the spatial distribution of traps and the known infested trees within the regulated area provides an estimate of the relationship between trap catch and beetle pressure exerted on the traps. Studies continue to optimize lure composition and trap placemen
    • …
    corecore